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ABSTRACT
The climate variability in global land precipitation is important for the global hydrological cycle. 
Based on the Coupled Model Intercomparison Project Phase 6 (CMIP6) historical experiments and 
the Global Monsoons Model Intercomparison Project (GMMIP) Tier-1 experiments, the spatial- 
temporal characteristics of global and regional land precipitation long-term climate changes in 
CAS FGOALS-f3-L are evaluated in this study. By comparing these two kinds of experiments, the 
precipitation biases related to the SSTs are also discussed. The results show that the two experi-
ments could capture the precipitation trend and amplitude to a certain degree compared with 
observations. The GMMIP simulations show a higher skill than the historical runs verified by 
correlation coefficients partly because the observed monthly mean SST was prescribed. For the 
Northern Hemisphere, GMMIP can reproduce the trend and variability in global precipitation, while 
historical simulations cannot reproduce the trend and variability. However, both experiments fail 
to simulate the amplitude of the southern hemisphere summer precipitation anomalies. Ensemble 
empirical mode decomposition (EEMD) was applied to compare the simulated precipitation on 
different time scales. The sea surface temperature anomaly (SSTA) bias, especially the La Niña-type 
SSTA, is the dominant source of the model bias for simulating interannual precipitation anomalies. 
The authors also emphasize that the response of precipitation anomalies to the ENSO effect varies 
regionally. This study highlights the importance of the multiannual variability in SSTAs in global 
and hemispheric precipitation simulations. The ways to improve the simulation of global precipita-
tion for CAS FGOALS-f3-L are also discussed.

FGOALS-f3-L全球陆地降水气候变率评估:GMMIP与historical试验的比较
摘要
全球降水对人们生产生活和经济发展都至关重要° 因此, 评估模式对降水的模拟能力至关重要° 
近期大气物理研究所发布了两套CMIP6试验数据, 结合GPCC降水资料, 本文评估了两组试验对 
1900–2014年全球陆地降水以及各半球夏季降水模拟性能° 结果表明, 无论是年际尺度还是长期 
趋势的模拟, GMMIP试验均表现出更好的模拟性能° 考虑到两组试验设计的角度和海温对年际 
降水的重要影响, 本文探讨了全球海温异常尤其是ENSO事件对全球降水和各半球夏季降水的重 
要性° 结果表明, 赤道太平洋地区海温对降水模拟影响显著, 其影响主要集中在中低纬地区° 这 
对降水模拟的改进有很大帮助° 
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1. Introduction

Changes in global land precipitation have received 
much scientific and societal attention due to their 
impacts on resource administration, ecosystem con-
struction, and economic development. In the past, stu-
dies on its climatic change and mechanism 
encountered obstacles due to the limitation of datasets 
(Wentz et al. 2007; Adler et al. 2008; Zhou et al. 2008). 
Numerical simulation can fulfil the vacancy to a certain 
extent. Prior studies have achieved extensive valuable 

results using the model simulation and datasets pro-
vided by Coupled Model Intercomparison Project Phase 
3 (CMIP3) and Coupled Model Intercomparison Project 
Phase 5 (CMIP5) (Ren et al. 2013). Model projections 
have indicated on the interannual timescale that the 
most determinant of variability in global precipitation 
fields is associated with the El Niño-Southern 
Oscillation (ENSO) (Smith, Yin, and Gruber 2006; Zhou 
et al. 2008; Gu and Adler 2013; Gu and Adler 2015). The 
relationship between global precipitation and Niño3.4 
is negative. Global precipitation often decreases in 
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warm event years (Diaz, Bradley, and Eischeid 1989; Dai, 
Fung, and Del Genio 1997; Curtis and Adler 2003; Gu 
and Adler 2015). Globally, the first EOF in global pre-
cipitation fields is an ENSO-related pattern (Dai, Fung, 
and Del Genio 1997). Inconsistent responses to the 
ENSO effect exist in different regions and different 
seasons (Dai, Fung, and Del Genio 1997; Curtis and 
Adler 2003). The region with the closest relationship 
between precipitation and ENSO is the tropics (Diaz, 
Bradley, and Eischeid 1989). In addition, the signal in 
the tropics is connected to extratropical precipitation 
anomalies through meridional atmospheric circulations 
(Curtis and Adler 2003). On the long-term timescale, 
increases in global precipitation follow increases in sur-
face temperatures and greenhouse gases (Wentz and 
Schabel 2000; Wentz et al. 2007; Adler et al. 2008). In 
addition, the relationship between the SST pattern and 
global precipitation has been confirmed by simulation 
and model data diagnosis, which may have implica-
tions for the study of rainfall projections (Zhou et al. 
2008; Chiang and Friedman 2012; Langenbrunner and 
Neelin 2013; Gu and Adler 2013, 2015). Except for the 
ENSO effect, the obvious decrease in global land mon-
soon precipitation during 1949–2001 was mainly 
caused by the warming over the central–eastern 
Pacific and the western tropical Indian Ocean (Zhou 
et al. 2008; Jiang and Zhou 2019). The remote impact 
of temperature in the North Atlantic can affect precipi-
tation anomalies through teleconnection (Chiang and 
Friedman 2012; Gu and Adler 2015).

The precise representation of precipitation has been 
a consistent focus for the climate community for years 
because of its scientific significance and great societal 
and economic implications; it is indeed a common and 
complex issue in climate models. In attempting to 
improve climate model simulations, the Coupled Model 
Intercomparison Project Phase 6 (CMIP6) is designed, 
and the datasets are currently available (Eyring et al. 
2016). The Global Monsoons Model Intercomparison 
Project (GMMIP) has been endorsed as one of the mod-
els intercomparison projects (MIPs) in the CMIP6. The 
primary goals of GMMIP are to better simulate monsoon 
climatology and variability and to understand the phy-
sical process (Eyring et al. 2016; Zhou et al. 2016). 
Moreover, the CMIP historical simulations provide rich 
opportunities to assess model ability to simulate climate, 
including variability and century timescale trends (Eyring 
et al. 2016). The external forcing of the two simulations 
are both prescribed as their monthly mean observation 
values, as recommended by the CMIP6 projects. In addi-
tion, the two simulations define output streams in the 
centrally coordinated CMIP6 data request so that vari-
ables can be stored at the specified frequency and 

resolution required to address the specific science ques-
tions and evaluations (Eyring et al. 2016).

The Chinese Academy of Sciences (CAS) Flexible 
Global Ocean-Atmosphere-Land System (FGOALS-f3-L) 
climate system model, which was developed at the 
State Key Laboratory of Numerical Modeling for 
Atmospheric Sciences and Geophysical Fluid Dynamics 
(LASG)/Institute of Atmospheric Physics (IAP) (Zhou et al. 
2012, 2015; Bao et al. 2019; He et al. 2019), recently 
finished GMMIP and historical simulations and released 
related datasets (He et al. 2019, 2020). It is worth evalu-
ating its performance in precipitation simulations for 
further model improvement. In this study, our first 
major objective is to assess the fidelity of precipitation 
variability in both GMMIP Tier-1 and historical experi-
ments for CAS FGOALS-f3-L. In particular, we intend to 
evaluate both the interannual variability and long-term 
trend of precipitation obtained by EEMD here during the 
1901–2014 period. From the perspective of SSTA differ-
ences, our second major objective is to find the causes of 
simulation diversity and identify the effect of interannual 
sea surface temperature on precipitation in CAS 
FGOALS-f3-L. The outputs from historical and GMMIP 
Tier-1 simulations can be applied to diagnose the impact 
from the SSTA bias.

The rest of this paper is organized as follows: Section 
2 describes the employed datasets and methods 
employed for this study. In section 3, the simulated 
precipitation variability in CAS FGOALS-f3-L is compared 
with observations, and a possible source of simulation 
deviation is explored. Finally, a brief summary and 
a discussion are given in section 4.

2. Data and method

2.1 Datasets

The observational precipitation dataset used in the 
study is the Full Data Reanalysis provided by the Global 
Precipitation Climatology Center (GPCC v7). The GPCC 
dataset for the period 1901–2014 has a spatial resolution 
of 1°×1°. The GPCC’s Full Data product includes monthly 
precipitation totals of more than 85 000 stations 
(Schneider et al. 2015). Two sets of simulations, GMMIP 
Tier-1 and historical experiments, are carried out by CAS 
FGOALS-f3-L climate system model. The detailed experi-
mental design and model configuration for the two 
experiments can be found in He et al. (2019, 2020), 
respectively. Table 1 shows the main differences 
between the two sets of experiments. The following 
GMMIP refers to the GMMIP Tier-1 experiment, and ‘his’ 
is the abbreviation of historical. The GMMIP outputs last 
from 1870 to 2014, while the historical runs from 1850 to 
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2014, both with a spatial resolution of 1°×1°. The main 
difference between the two in experimental design is 
that the SST was prescribed in GMMIP when simulated in 
the historical runs. Note that the two simulations contain 
three experiments, named r1i1p1f1, r2i1p1f1, and 
r3i1p1f1. Time lag ensemble methods are employed for 
both experiments.

In addition to precipitation datasets, the Extended 
Reconstructed Sea Surface Temperature (ERSST) version 
3 dataset (Xue, Smith, and Reynolds 2003; Smith et al. 
2008) with a spatial resolution of 1°×1° from 1901 to 
2014 was applied to explore the rainfall-SSTA relation-
ship. Accordingly, SST obtained from two simulations is 
also available. The Niño3.4 index was derived from the 
SST anomaly calculated in the Niño3.4 region (5°S–5°N, 
170°W–120°W).

2.2 Method

To understand the simulation of global monsoon pre-
cipitation variability of CAS FGOALS-f3-L, we calculated 
the local summer land precipitation in the northern and 
southern hemispheres. Local summer is defined from 
June to August (from December to February) for the 
Northern (Southern) Hemisphere. When investigating 
the summer precipitation in the Northern Hemisphere 
(NH), we evaluated the summer mean (JJA) and regional 
average of the Northern Hemisphere (0°–90°N) for the 
seven groups of data, which include the GPCC datasets, 
three members of the GMMIP and three members of the 
historical experiment datasets. Similarly, data after 
a summer mean (DJF) and a regional average of the 
Southern Hemisphere (0°–90°S) are used to assess the 
simulation of the Southern Hemisphere (SH). The clima-
tological mean data here are averaged between 1951 
and 1980. Additionally, three-member ensemble means 
of anomalies are computed to reduce internal noise and 
model uncertainty.

In addition, to evaluate the GMMIP and historical 
simulation abilities at different timescales exhaustively, 
we applied the ensemble empirical mode decomposi-
tion (EEMD) approach to extract the components from 

the annual precipitation anomalies. The EEMD is 
a developed adaptive and temporally local data analysis 
method based on the empirical mode decomposition 
(EMD) method (Huang et al. 1998; Huang and Wu 
2008), which decomposes a data series into finite com-
ponents at different frequencies called intrinsic mode 
functions (IMFs) (Huang et al. 1998; Huang and Wu 
2008; Franzke 2010; Franzke and Woollings 2011). In 
the EMD method, the data series can be decomposed 
into several IMFs: 

X tð Þ ¼
Xn

i¼1

Ij þ r nð Þ; (1) 

where Ij denotes the jth IMF and r nð Þ is the residual term 
after n IMFs are extracted. By adding noise, EEMD elim-
inates the mode mixing problem to a large extent (Wu 
and Huang 2009). For more information on the detailed 
procedure, refer to Wu and Huang (2009). The method 
has been employed widely to analyse time series and 
extract trends based on its ability and robustness (Huang 
and Wu 2008; Wu and Huang 2009; Qian et al. 2009, 
2010, 2011; Franzke 2010; Franzke and Woollings 2011). 
In addition, we can use the counting cross zero numbers 
method to estimate the averaged period of each com-
ponent (Qian et al. 2011). We can take each IMF as 
a wave. The wavelength and wave number can help us 
estimate the averaged period.

3. Results

3.1 Fidelity of long-term climate variability of land 
precipitation simulation in FGOALS-f3-L

The observed and simulated annual mean global land 
precipitation time series from 1850 to 2014 are shown in 
Figure 1(a). The observed (red line) and ensemble means 
of the three GMMIP (black lines) and historical (blue lines) 
simulations are denoted by thick lines. Evident increases 
and clear interannual and multidecadal variability in 
annual precipitation are shown in the observations and 
are well reproduced in both experiments. Separately, 
GMMIP provides rational amplitude compared with 

Table 1. Brief introduction to the experimental design.

Experiment_id Variant_label
Integration 

time Experimental design

GMMIP Tier-1 amip-hist r1i1p1f1 1861−2014 The model integration starts with external forcings defined by the observed datasets, 
especially sea surface temperature. In addition, the outputs last from 1870 to 2014, and the 
first nine integration years are recognized as the spin-up time.

GMMIP Tier-1 amip-hist r2i1p1f1 1862−2014 The same as r1i1p1f1, but the first eight integration years are recognized as the spin-up time.
GMMIP Tier-1 amip-hist r3i1p1f1 1863−2014 The same as r1i1p1f1, but the first seven integration years are recognized as the spin-up time.
Historical Historical r1i1p1f1 1850−2014 The external forcing of sea surface temperature was simulated by the model. In addition, the 

outputs last from 1850 to 2014.
Historical Historical r2i1p1f1 1850−2014 The same as r1i1p1f1.
Historical Historical r3i1p1f1 1850−2014 The same as r1i1p1f1.
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historical simulations. It is notable that some extreme 
precipitation years can be captured in the GMMIP simula-
tion. For the boreal summer monsoon precipitation 
anomaly in the Northern Hemisphere (Figure 1(b)), 
GMMIP experiments can simulate reasonable precipita-
tion anomalies, such as the one after 1995. Moreover, 
the two experiments show better simulation of precipita-
tion amplitudes after 1930. For the monsoon simulation in 
the Southern Hemisphere (Figure 1(c)), it is worth noting 
that an apparent discrepancy in the precipitation anomaly 
intensity simulation exists between the simulated and 
observed results. Specifically, the simulated precipitation 
anomalies are weaker compared to those observed in 
both simulations. Obvious positive anomalies can be 
found in 1917, 1973, and 2010, while negative anomalies 
can be found in 1965 and 1982. Nevertheless, GMMIP runs 
still show better simulation performance in detail. For the 
validation of interannual variation, the correlation coeffi-
cients of timeseries between the observations and the 

two experiments are shown in Table 2. The correlation 
of precipitation anomalies between the GPCC and GMMIP 
output ensemble mean is up to 0.700, and r3i1p1f1 is the 
best. Meanwhile, the correlation between the GPCC and 
historical runs ensemble mean is 0.404, while r3i1p1f1 
shows the best skill of 0.459. The temporal correlation 
with global annual precipitation is relatively higher than 
that with hemispheric summer precipitation, presumably 
resulting from the monsoon precipitation simulation, 
which involves more complicated physical processes. As 
depicted in Table 2, the correlation with GMMIP for 
Northern Hemisphere summer precipitation attains 
0.478, while the correlation with historical runs is negative 
in accordance with Figure 1(b). For south hemispheric 
summer precipitation, similar to previous results, the cor-
relation with GMMIP reaches 0.358, while the correlation 
with historical runs reaches 0.086.

Extensive studies have shown that global precipi-
tation variability exhibits different characteristics at 

Figure 1. (a) Annual and global averaged land precipitation anomalies (relative to the climatology over 1951−1980). The red, black, 
and blue solid lines denote GPCC datasets and ensemble mean of GMMIP and historical experiments, respectively. Three kinds of 
dashed lines represent the three ensemble members: r1i1p1f1, r2i1p1f1, and r3i1p1f1. (b) As in (a) but for summer precipitation in the 
Northern Hemisphere. (c) As in (a) but for summer precipitation in the Southern Hemisphere (units: mm d−1).
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different timescales, such as ENSO-related interannual 
variations and AMO-related multidecadal oscillations. 
(Knight, Folland, and Scaife 2006; Nigam, Guan, and 
Ruiz-Barradas 2011; Gu and Adler 2015). To investi-
gate the simulation skill of CAS FGOALS-f3-L and to 
understand the model bias in the simulation of the 
precipitation climate variability from the perspective 
of multi-timescale separation, the correlation coeffi-
cients between the observations and the three- 
member ensemble mean of the two experiments are 
computed after applying EEMD (Table 3). In this 
study, IMF1 has an average period of approximately 
2.8 yr. In addition, the second and third intrinsic 
mode functions (IMF2, IMF3) correspond to the 5 yr 
and 16 yr period variability components, respectively; 
IMF4 denotes the 25 yr period variability component, 
and the long-term components are composed of 
trends longer than 40 yr. The ENSO-related pattern 
with a 5 yr period is most dominant in global pre-
cipitation fields (Dai, Fung, and Del Genio 1997), 
which is also our focus in this study. There is 
a certain difference between the observed and simu-
lated ENSO-related variability components. Especially 
for southern hemispheric summer precipitation, the 
correlations between the observations and the two 
experiments are negative. However, GMMIP still main-
tains a better performance compared with historical 
simulation from the correlation coefficients. It is note-
worthy that long-term trends can be reproduced in 
both experiments, which provides a powerful tool to 
explore how global precipitation may vary under 
a warming background, including precipitation mag-
nitude and spatial mode.

In general, the simulation of precipitation climate 
variability in GMMIP Tier-1 experiments shows better 
skills than historical runs distinctly at different timescales 
in both global land precipitation and hemispheric land 
precipitation. In the next section, SSTAs bias will be 
taken into account in revealing the possible cause of 
the simulation difference.

3.2 Attribution of SSTA bias in the precipitation 
simulation

In view of the reasonable reproducibility of GMMIP 
simulation, another question we want to address is 
the source of simulation discrepancy between two 
sets of experiments. Previous studies have shown 
the dominant effect of global SSTs on land surface 
precipitation changes (Dai, Fung, and Del Genio 1997; 
Zhou et al. 2008; Gu and Adler 2015). ENSO is 
a leading component of climate change originating 
from the tropical Pacific and plays an important role 
in the spatial structures of global precipitation varia-
bility (Gu and Adler 2015). To investigate the impact 
of SSTA interannual variations on precipitation 
changes, we next examined the relationship between 
global precipitation and SSTAs by the regression 
method. Figure 2 shows a regression map of SSTA 
onto the IMF2-related GPCC and the simulated 
ensemble mean of precipitation anomalies. The sha-
dow locates the regions that surpass the 99% con-
fidence level. The green box denotes the Niño3.4 
zone. Over the central-eastern equatorial Pacific, the 
spatial structure of SSTA shows a typical La Niña 
pattern, which is an essential feature, especially in 
the annual and JJA mean (Figure 2(a1,b1,a2,b2)). 
The corresponding strong ENSO pattern extends 
into the subtropical Pacific and declines substantially 
in higher latitudes. However, the El Niño-type SSTA 
pattern is displayed in the historical simulation 
(Figure 2(c1,c2)). For the DJF mean south hemisphere 
(Figure 2(a3,b3,c3)), the ENSO signal weakened signif-
icantly. At higher latitudes, precipitation anomaly 
responses in the North Atlantic, though weak, can 
also be observed. Uniform SSTA signals in the 
GMMIP simulation agree with observations, while 
dipole SSTAs exist in historical runs. Consequently, 
SSTA simulation divergence is one of the sources of 
the above experimental results difference.

Table 2. Correlation of precipitation anomalies between the two 
sets of experiments and GPCC. GMMIP refers to GMMIP Tier-1 
experiments, and His denotes historical simulations. ‘*’ denotes 
exceedance of the 95% confidence level, and ‘**’ denotes excee-
dance of the 99% confidence level.

ANN(GL) JJA(NH) DJF(SH)

GMMIP ENS 0.700** 0.478** 0.358**
GMMIP r1 0.569** 0.330** 0.222*
GMMIP r2 0.653** 0.435** 0.350**
GMMIP r3 0.700** 0.463** 0.276**
His ENS 0.404** −0.026 0.086
His r1 0.459** 0.186* 0.005
His r2 0.276** −0.06 0.081
His r3 0.211* −0.199* 0.068

Table 3. Correlation of precipitation anomalies with different 
timescales between the two experiments and GPCC. GMMIP 
refers to GMMIP Tier-1 experiments, and His denotes historical 
simulations. ‘*’ denotes exceedance of the 95% confidence level, 
and ‘**’ denotes exceedance of the 99% confidence level.

ANN(GL) JJA(NH) DJF(SH)

GMMIP IMF1 0.405** 0.410** 0.121
IMF2 0.303** 0.145 −0.048
IMF3 0.684** 0.110 0.656**
IMF4 0.373** 0.157 0.796**
Long term 0.928** 0.537** 0.874**
His IMF1 −0.214* −0.143 −0.046
IMF2 0.170 0.052 −0.283**
IMF3 0.314** −0.187* 0.289**
IMF4 0.189* 0.406** −0.058
Long term 0.768** 0.261** 0.843**
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Regression maps of precipitation anomalies of two 
simulations against the Niño3.4 index using corre-
sponding SST datasets are constructed to find the 
areas sensitive to tropical Pacific SST signals owing to 
the influential ENSO effect. As shown in Figure 3(a1), 
the ENSO effect on precipitation variability varies from 
region to region, with a focus on low and mid-latitudes 
in general, and tends to be weak at higher latitudes. 
Generally, the observed response is in agreement with 
Figure 6 in Gu and Adler (2015). For the two experi-
ments (Figure 3(b1,c1)), although relatively large differ-
ences can be found in the south-eastern part of Asia, 
eastern Australia, South America, and central Africa, 
spatial structures of the observed precipitation anom-
aly responses to ENSO are well simulated. Beyond 
doubt, some regions, such as South America, the south-
ern part of North America, and most of Eurasia, are 
sensitive to the ENSO effect and show spatial patterns 
that are similar to the observations, but the amplitudes 
are weaker. Regional pattern differences emerge in the 
Asian monsoon area, central Africa, and Australia in 
detail. For Northern Hemisphere summer precipitation, 
Central Europe, and North America show significantly 
positive precipitation anomalies, which have been 
reproduced in two experiments (Figure 3(a2,b2,c2)). 

Negative precipitation anomalies are displayed in 
India and eastern China, where the simulations diverge 
between the two experiments. In addition, details por-
trayed by the GPCC in East Asia are missed in both 
experiments. Patterns of the rainfall-SSTA relationship 
in SH for both experiments are closer to GPCC than in 
NH except for eastern Australia (Figure 3(a3,b3,c3)). In 
comparison, it is obvious that the simulation quality of 
GMMIP runs is better than historical runs from the 
perspective of the rainfall-SSTA relationship.

Overall, realistic simulation of the SST field is neces-
sary for CAS FGOALS-f3-L to capture the temporal char-
acteristics of global and hemispheric land precipitation.

4. Summary and discussion

In this study, we investigate the primary temporal 
characteristics of global land precipitation of GMMIP 
Tier-1 and historical runs from CAS FGOALS-f3-L by 
comparing with the global monthly precipitation 
dataset GPCC V7. The CAS FGOALS-f3-L outputs pro-
vide considerable information on the global annual 
precipitation, especially on trend simulations. For the 
historical and GMMIP Tier-1 experiments, GMMIP 
shows better performance in reproducing global 

Figure 2. Regression maps of SST anomalies onto IMF2 of precipitation anomalies from (a1−a3) GPCC, (b1−b3) GMMIP, (c1− c3) 
historical runs over global-and-annual mean (top panel), NH-JJA (middle panel), and SH-DJF (bottom panel). The shadow locates the 
regions that surpass the 99% confidence level. The green box denotes the Niño3.4 zone.
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precipitation variation characteristics in terms of mag-
nitude and trend, with a correlation coefficient up to 
0.7. Similarly, GMMIP can reproduce boreal summer 
precipitation more reasonably with a coefficient up to 
0.478, while the correlation between historical simu-
lation and GPCC is negative. Although both experi-
ments fail to simulate the observed magnitude for 
southern hemispheric summer precipitation, GMMIP 
simulation shows better capability by comparing the 
correlation with observations. We use timeseries after 
EEMD to estimate the climate variability of global 
precipitation in two sets of experiments.

The attribution of SSTAs bias between the two runs 
is also explored for model improvement. The rainfall- 
SSTA relationship manifested in GMMIP outputs is 
more unanimous with the observations in both 
magnitude and spatial distribution. The ENSO signal 
significantly affects global precipitation at low to mid- 
latitudes, which may lead to performance differences. 
The North Atlantic SSTA mode effect can also be 
embodied. The precipitation anomaly response to the 
ENSO effect varies from region to region. On the inter-
annual timescale, global precipitation anomalies over 
the Asian-Australian monsoon region are mostly nega-
tive, while those in in central Europe and North 

America are positive. In two experiments, the Asian- 
Australian monsoon area and central Africa show dif-
ferent patterns from observations, while global preci-
pitation almost tends to be weaker. Hence, corrected 
SSTA patterns can help us more accurately simulate 
interannual global land precipitation, especially tropi-
cal Pacific SST.

Although the relation between SSTAs and global pre-
cipitation has been confirmed by numerous studies, 
model performance may vary due to differences in 
model physical processes. Moreover, precipitation simula-
tion is also affected by numerous factors, such as anthro-
pogenic greenhouse gas emissions and surface land 
temperature, other than SSTAs. Further analysis is neces-
sary to understand the role of model physics and external 
forcing on reproducing the SSTA-precipitation patterns.
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