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ABSTRACT: There is a distinct gap between tropical cyclone (TC) prediction skill and the societal demand for accurate pre-

dictions, especially in the western Pacific (WP) and North Atlantic (NA) basins, where densely populated areas are frequently

affected by intense TC events. In this study, seasonal prediction skill for TC activity in the WP and NA of the fully coupled

FGOALS-f2V1.0 dynamical prediction system is evaluated. In total, 36 years of monthly hindcasts from 1981 to 2016 were com-

pleted with 24 ensemble members. The FGOALS-f2V1.0 system has been used for real-time predictions since June 2017 with 35

ensemble members, and has been operationally used in the two operational prediction centers of China. Our evaluation indicates

that FGOALS-f2V1.0 can reasonably reproduce thedensity ofTCgenesis locations and tracks in theWPandNA.Themodel shows

significant skill in terms of the TC number correlation in the WP (0.60) and the NA (0.61) from 1981 to 2015; however, the model

underestimates accumulated cyclone energy. When the number of ensemble members was increased from 2 to 24, the correlation

coefficients clearly increased (from 0.21 to 0.60 in the WP, and from 0.18 to 0.61 in the NA). FGOALS-f2V1.0 also successfully

reproduces the genesis potential index pattern and the relationship between El Niño–SouthernOscillation and TC activity, which is

one of the dominant contributors to TC seasonal prediction skill. However, the biases in large-scale factors are barriers to the

improvement of the seasonal prediction skill, e.g., larger wind shear, higher relative humidity, and weaker potential intensity of TCs.

For real-timepredictions in theWP,FGOALS-f2V1.0demonstrates a skillful prediction for trackdensity in termsof landfallingTCs,

and the model successfully forecasts the correct sign of seasonal anomalies of landfalling TCs for various regions in China.

SIGNIFICANCE STATEMENT: Skillful prediction of tropical cyclone (TC) activity on a seasonal time scale is a

reference for preventing and reducing disasters, but there is a distinct gap between TC prediction skill and the societal

demand for accurate predictions, especially in the western Pacific and North Atlantic basins. The seasonal prediction of

TCs using a global dynamical prediction system is potentially a useful tool for disaster prevention and mitigation.

FGOALS-f2 V1.0 is a dynamical global ensemble prediction system, which has the ability to make seasonal predictions

of global TCs. Here we evaluate the prediction skill for TCs in FGOALS-f2 V1.0 and then give possible reason(s) for the

demonstrated levels of skill. The skillful prediction of TCs predicted by FGOALS-f2 V1.0 is shown in this study, es-

pecially in the western Pacific (WP) and the North Atlantic (NA), e.g., genesis location and TC number correlation (r5
0.60 in WP; r 5 0.61 in NA), which will contribute to disaster prevention and mitigation.

KEYWORDS: Tropical cyclones; Seasonal forecasting; Climate models; Coupled models; Model evaluation/performance

1. Introduction

Seasonal prediction of tropical cyclone (TC) activity is of

scientific value and is also a reference for disaster prevention

and mitigation. Although the nowcasting of TC genesis loca-

tions and tracks is relatively accurate, it is difficult to satisfy the

demands from all sectors of society, and a longer setup time is

required for the prevention of high-impact TC events (Walsh

et al. 2016; Camargo et al. 2007a; Camargo and Wing 2016;

Vecchi et al. 2014). Seasonal forecasting is mainly concerned

with the anomalies of a particular type of event compared to

its climatology. The core mission of seasonal forecasting is

to estimate the change in the likelihood of a climatic event

happening in the next few months compared to its average
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likelihood. The seasonal prediction of TCs mainly focuses

on the seasonal anomalies of TC genesis, track density, in-

tensity, and landfall. The results of TC seasonal forecasts

mainly serve decision-makers in government, insurance and

reinsurance companies, and other private sector entities.

Compared with weather forecasts of particular individual

storms, which are sensitive to the atmospheric initial con-

ditions, the prediction signals for TCs on seasonal time

scales mainly come from external forcings (e.g., greenhouse

gases and aerosols), oceanic conditions (e.g., sea surface

temperatures), land surface processes (e.g., soil moisture),

and the large-scale air–sea pattern [e.g., the El Niño–Southern
Oscillation (ENSO) andMadden–Julian oscillation (MJO)], in

addition to the initial conditions (Camargo and Sobel 2005;

Camargo et al. 2007b; Tang and Neelin 2004; Kim et al. 2009;

Zhao et al. 2019; Camp et al. 2019; Moon et al. 2015).

Statistical methods were first applied to the seasonal pre-

diction of TCs in the 1970s, due to the lack of computing re-

sources, suitable resolution, and reasonable parameterization

of physical processes for numerical models (Nicholls 1979;

Gray 1984; Gray et al. 1993, 1994; Choi et al. 2014, 2016). These

statistical seasonal prediction methods can be summarized into

three steps: 1) find a statistical relationship between TC activity

and a predictand; 2) develop a physical hypothesis for the

observed statistical relationship; and 3) establish a statistical

model that uses a single (or more often multiple) predictor(s)

FIG. 1. Main structure of the dynamical TC seasonal prediction system, FGOALS-f2 V1.0,

used in this study. A time-varying nudging method, which is based on the incremental

analysis updating (IAU) process, is used to provide the initial conditions for the seasonal

prediction. A total of 24 and 35 ensembles are used in the hindcast and real-time prediction

framework, respectively. Variables at 6-h intervals (warm core, sea level pressure, 850-hPa

vorticity, and surface wind) are used for TC detection, and the TC characteristics are

diagnosed.
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to hindcast TC activity. For example, Gray et al. (1993, 1994)

considered the effect of ENSO, African rainfall, Caribbean

Sea level pressures and the quasi-biennial oscillation on TC

activity and provided a seasonal prediction of TC activity

in the North Atlantic (NA). Wang et al. (2013) used the

western Pacific (WP) subtropical high as a critical predictor

for the seasonal prediction of TCs in the Northwest Pacific.

One of the advantages of statistical methods is that we can

easily get a skillful prediction without the explicit physical

connection between the large-scale factors and TCs. However,

the disadvantage is that the physical relationships between

the predictors and TCs might change with time (Nath et al.

2015; Zhang et al. 2016, 2017; Zhang and Villarini 2019), and

overfitting in statistical methods can considerably reduce

the accuracy of models.

The dynamical prediction skill for TCs in global climate

models (GCMs) could be improved by increasing the hori-

zontal resolution and improving physical parameterization

processes. Wu and Lau (1992) used the Geophysical Fluid

Dynamics Laboratory (GFDL) global general circulation model

with a 417-km horizontal resolution to analyze TC activity and

found that, as long as the large-scale pattern was reasonable

in the model, it could capture TC-like structure. In recent

years, analyzing TC activity using GCMs has become popular

(Oouchi et al. 2006; Manganello et al. 2012, 2014; Murakami

et al. 2012; Small et al. 2014). Zhao et al. (2019) evaluated

the simulation performance of TCs in the GFDL High

Resolution Atmospheric Model (HiRAM) with a 50-km

horizontal resolution, and showed that it can reproduce the

climatology and variability of TC activity reasonably in the

WP and NA. Climate models have the ability to simulate

many aspects of TC activity, and show potential in the predic-

tion and projection of TC activity (Knutson et al. 2010; Vitart

et al. 2003; Walsh et al. 2016; Camargo and Wing 2016; Baldwin

et al. 2019). In addition, the climate models participating in

the most recent phase of the CoupledModel Intercomparison

Project (i.e., phase 6; CMIP6) (Eyring et al. 2016) can simu-

late TC activity with a 100-km resolution (Zhao et al. 2018a,b;

Li et al. 2019).

Dynamical TC prediction on seasonal time scales began

in the 1990s, and since that time the European Centre for

Medium-Range Weather Forecasts (ECMWF) has started

to make operational predictions of TCs on subseasonal-to-

seasonal time scales (Vitart 2014; Manganello et al. 2016).

The dynamical approach based on its model can provide

spatial and temporal patterns that may better predict sea-

sonal TC activity compared with traditional statistical re-

gression methods. Chen and Lin (2013) applied HiRAM to

make seasonal predictions of TCs with a fixed sea surface

temperature (SST) and demonstrated high skill in retro-

spective seasonal forecasts of TCs in the WP (r 5 0.36) and

NA (r 5 0.89). Murakami et al. (2016b) used the high-

resolution GFDL coupled climate model HiFLOR to

evaluate the prediction skill for major hurricanes and

landfalling TCs, and found a positive contribution to TC

prediction when increasing the horizontal resolution and

accounting for air–sea interaction. Compared with regional

models, the advantage of GCMs in TC prediction is that

boundary effects are avoided, and there is no tuning re-

quired for a specific region, which is beneficial for ex-

tracting the predicted signal from the large-scale pattern

(Mason et al. 1999; Chen et al. 2019a,b; Jia et al. 2015;

Manganello et al. 2019; Zhou et al. 2019; Li et al. 2016;

Davis and Zeng 2019). Murakami et al. (2016b) found

that a high-resolution climate model could predict both

NA seasonal TC numbers and landfalling TC numbers

with skill (r 5 0.63 for TC; r 5 0.69 for hurricane). The

latest generations of GCMs have the potential for TC

prediction from synoptic to climatic time scales (Alessandri

et al. 2011; Arribas et al. 2011; Murakami et al. 2015, 2016a,b;

MacLachlan et al. 2015; Villarini et al. 2019). The Subseasonal

to Seasonal Prediction (S2S) project based on a multimodel

ensemble is an effective resource for reducing uncertainty in

TC prediction (Vitart and Robertson 2018). The S2S proj-

ect, which was approved by the World Meteorological

Organization, was originally designed to provide a platform

for models to provide forecasting information. Previous

studies have shown that the S2S prediction skill for TCs is

increased when more models are considered (Vitart and

Robertson 2018; Vitart et al. 2017).

In this study, using a fully coupled climate system model

and a nudging-based initialization method, we first devel-

oped an ensemble seasonal prediction system, named

FGOALS-f2 version 1.0 (Bao et al. 2018). The climate

system model, named CAS FGOALS-f2 (He et al. 2019;

Li et al. 2019; Bao and Li 2020) was developed by the State

Key Laboratory of Numerical Modeling for Atmospheric

Sciences and Geophysical Fluid Dynamics (LASG) at the

Institute of Atmospheric Physics (IAP), which is part of

the Chinese Academy of Sciences (CAS). Li et al. (2019)

comprehensively evaluated the performance of TC activ-

ity in the atmospheric component of CAS FGOALS-f2 and

found that the 18 model (horizontal resolution of 100 km)

was able to successfully reproduce TC activity, including

the climatological features and interannual variability.

Wang et al. (2015) summarized recent progress in seasonal

prediction research in China and pointed out that the

seasonal prediction of TC activity in China is mainly based

on statistical methods. Klotzbach et al. (2019) discussed

the forecast methods, outputs and skill for several TC

forecasting agencies around the world, and they found

that both the hindcast and real-time prediction of TC

activities in the WP and other TC basins have shown

good skill. Therefore, the primary aim of this paper is to

TABLE 1. The Saffir–Simpson hurricane wind scale (Simpson and

Saffir 1974).

Category Sustained winds (kt)

Tropical storm 34–63

1 64–82

2 83–95

3 96–112

4 113–136

5 $137
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evaluate the dynamical seasonal prediction skill for TCs in

the WP and NA using FGOALS-f2 V1.0 and to determine

how well a 18 dynamical prediction system can predict TC

activity.

The remainder of this paper is organized as follows.

Section 2 introduces the dynamical model and configuration

of the seasonal prediction system. Section 3 introduces the

observational dataset and the TC detection method. In

section 4, the climatology and interannual variability of the

predicted TC activity in the WP and NA are shown. The

impact of ensemble sizes is discussed in section 5. The large-

scale factors and the possible link between TC activity and

ENSO on seasonal time scales are discussed in sections 6

and 7. In section 8, a recent 3-yr real-time forecast skill of

TCs in the WP is given. In section 9, the monthly prediction

skill of TCs is shown. Last, a brief discussion and summary of

the results are given in section 10.

2. Dynamical model and seasonal prediction system

a. Climate system model (CAS FGOALS-f2)

There are four fully coupled components in the CAS

FGOALS-f2 model: atmosphere, ocean, land, and sea ice. CAS

FIG. 2. (a),(b) The observed and FGOALS-forecast TC genesis location density for the WP, and (c),(d) the

observed and FGOALS-forecast TC genesis location density for the NA. The TC density is analyzed in a 18 3 18
grid box with 6-h intervals, and the unit of the color map is number per season (July–November). The

24-ensemble-member results of FGOALS-f2 V1.0 for the WP and NA in (b) and (d) are shown from 1981

to 2015. The IBTrACS data in the same period for the WP and NA in (a) and (c) are also shown as the

observations.
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FGOALS-f2 has a standard horizontal resolution of 100 km.

The atmospheric component of FGOALS-f2, FAMIL2, is

the latest-generation atmospheric model of LASG/IAP/CAS.

It uses a finite-volume method (Lin 2004) as the dynamical

core, which is discretized on a cubed-sphere grid system

(Putman and Lin 2007). The microphysics parameterization

used in FGOALS-f2 is from GFDL (Zhou et al. 2019), and six

species are considered. The cumulus parameterization used in

FGOALS-f2 is a convection-resolving precipitation scheme

(Bao and Li 2020), which involves calculating the micro-

physics in the cumulus processes for both deep and shallow

convection. According to a previous evaluation, FAMIL2

showed stable computing performance on a supercomputer

(Li et al. 2017; Zhou et al. 2012, 2015), and the simulation

performance of TCs at C96 (horizontal resolution of ap-

proximately 100 km) has also been previously reported

(Li et al. 2019). As the atmospheric component of FGOALS-

f2, FAMIL2 has participated in CMIP6 activities (Eyring et al.

2016), the Global Monsoons Model Intercomparison Project

(Zhou et al. 2016; He et al. 2019) and the High-Resolution

Model Intercomparison Project (HighresMIP) (Haarsma

et al. 2016; Bao et al. 2020). The land surface model used

in FGOALS-f2 is version 4 of the Community Land Model

(CLM4.0) (Oleson et al. 2010; Lawrence et al. 2011). The sea

ice model and ocean model used in FGOALS-f2 are the Los

Alamos Sea Ice Model, version 4.0 (CICE4.0) (Hunke et al.

2008), and the Parallel Ocean Program, version 2 (POP2)

(Kerbyson and Jones 2005), respectively.

b. Dynamical seasonal prediction system FGOALS-f2V1.0

Figure 1 shows the main structure of the dynamical TC

seasonal prediction system based on FGOALS-f2 V1.0 in

FIG. 3. As in Fig. 2, but for TC track density.

OCTOBER 2021 L I E T AL . 1763

Unauthenticated | Downloaded 01/05/22 08:00 AM UTC



real-time prediction and hindcast conditions. To evaluate

the seasonal prediction skill of TCs in FGOALS-f2 V1.0

systematically, a 35-yr hindcast (1981–2015) was designed

with 24 ensemble members. Temperature, surface wind,

surface pressure, and sea level pressure from the Japanese

55-year Reanalysis dataset (JRA55) (Kobayashi et al. 2015)

were assimilated using a time-varying nudging method as

the initial atmospheric conditions, which was based on the

incremental analysis updating (IAU) process (Bloom et al.

1996). The relaxation factor within the time window of the as-

similation varied with time (red curve in Fig. 1), and the biases

between the simulation and reanalysis data were effectively

limited towithin a certain rangewithmultiple assimilation loops.

In the oceanic component, the potential temperature in the

Global Ocean Data Assimilation System (GODAS) reanalysis

data (Huang et al. 2010) was also nudged as the initial oceanic

conditions.Although these datawere not the initial conditions in

the land surface and sea ice components of FGOALS-f2 V1.0,

the initial conditions in the atmospheric and oceanic com-

ponents drove the others to equilibrium.

The nudging time step was 6 h for the atmospheric compo-

nent but with a slow nudging time step of 90 days for the

oceanic component. A total of 24 ensemble members were

generated for the hindcast based on a time-lag perturbation

method. To obtain a stable integration, a 5-yr spinup time from

1976 to 1980was adopted, for which the initial conditions of the

ocean were derived from the historical run of FGOALS-f2.

The real-time prediction of FGOALS-f2V1.0 commenced in

early 2017 (Bao et al. 2018). The only difference between the

hindcast and real-time prediction was the ensemble size, which

was increased from 24 to 35 for the real-time prediction. Each

of the members in the hindcast and real-time prediction were

integrated for up to 6 months, and the forecast frequency was

once per month (on the 20th day of each month). Output data

at 6-h intervals were used to diagnose TCs.

3. Observational data and TC detection method

a. Observational data

The International Best TrackArchive for Climate Stewardship

v03r10 (IBTrACS) (Knapp et al. 2010) was used for TC obser-

vational data. IBTrACS is a multisource dataset, and the

data sources of IBTrACS used in this study were from

the National Oceanic and Atmospheric Administration’s

(NOAA) National Hurricane Center for the North Atlantic

and east Pacific (HURDAT2) (Landsea and Franklin 2013),

the China Meteorological Administration for the west Pacific

(Ying et al. 2014), and the Joint Typhoon Warning Center

for the remainder of the globe (Chu et al. 2002). The time

interval of the dataset is 6 h, which matches the model out-

put. Manganello et al. (2012) pointed out that it is necessary

to transform the 1-min-averaged maximum sustained winds

to 10-min-averaged maximum sustained winds to provide a

good platform to make comparisons between IBTrACS and

the hindcast of FGOALS-f2 V1.0. In line with previous

FIG. 5. (a) Hindcast of TC frequency and (b) ACE in theWP from

July to November during 1981–2015. The red lines show IBTrACS,

and the blue lines show the ensemble-mean hindcast of FGOALS-

f2V1.0. Each gray line indicates a single ensemble for the hindcast.

The correlation coefficients between the observations and ensemble-

mean hindcast of FGOALS-f2V1.0 are also shown for each panel.

FIG. 4. Rank correlation between the IBTrACS and hindcasts of

FGOALS-f2 V1.0 based on the track density of TCs. The 24-en-

semble-member and 35-yr data are analyzed on a 18 3 18 grid box

with 6-h intervals. Color shading indicates that the correlation

coefficients are significant at a two-sided P 5 0.1 level. The

gray shading indicates the regions where the observed track density

is nonzero for at least 25% of the years (approximately 9 years).
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studies (Manganello et al. 2012; Li et al. 2019), the coeffi-

cient was set to 0.88, which is based on a theoretical esti-

mation (Knapp et al. 2010). This means that the threshold

of a tropical storm is decreased from 18.01 to 15.84 m s21.

The ERA-Interim data (ECMWF interim reanalysis) (Dee

et al. 2011) and OISSTv2 (Optimum Interpolation Sea

Surface Temperature, version 2) data (Banzon et al. 2016;

Reynolds et al. 2007) for the period 1981–2015 were used to

evaluate the large-scale atmospheric/oceanic conditions re-

lated to the TCs in FGOALS-f2 V1.0.

b. TC detection method

An objective feature-tracking approach was used to

detect model-generated TCs based on the 6-h outputs of

IBTrACS and the hindcast of FGOALS-f2 V1.0 (Fig. 1).

We used the following fields to detect TCs: sea level

pressure, warm core (average temperature anomaly be-

tween 300 and 500 hPa), 10-m wind, and 850-hPa vorticity.

These fields are similar to the method used in the GFDL

climate model (Zhao et al. 2009; Chen and Lin 2013; Xiang

et al. 2015). Li et al. (2019) used this approach to evaluate

the simulated performance of TCs in FAMIL2 and ob-

tained reasonable results. The detection algorithm consists of

three steps:

1) The local maximum 850-hPa absolute vorticity within

a 600 3 600 km2 grid box is defined as a potential TC. Then,

there must be a minimum sea level pressure and a warm

core (18C warmer than the surroundings) within a 28 3 28
grid box centered on the 850-hPa absolute vorticity maxi-

mum. 2) The potential TCs are tracked and a judgment is

made as to whether the potential TCs satisfy the following

criteria: (i) TC lifetime . 72 h; (ii) surface wind . 17.4m s21.

3) TCs are then classified based on the Saffir–Simpson

hurricane wind scale (Simpson and Saffir 1974) (Table 1),

and the TC genesis locations are divided into seven basins:

north Indian Ocean, western North Pacific Ocean, eastern

North Pacific Ocean, North Atlantic Ocean, south Indian

Ocean, South Pacific Ocean, and South Atlantic Ocean.

We use the same definition as IBTrACS for TC basin

delineations.

4. Climatology and interannual variability of predicted
TC activity in WP and NA

Figures 2a and 2b show the density of TC genesis locations

(July to November) in the WP, as analyzed on a 18 3 18 grid
box for IBTrACS and FGOALS-f2 V1.0. The initial time of

prediction is 20 June during 1981–2015, and the ensemble-

mean result is analyzed. Based on observations (Fig. 2a),

there are two active regions for TC genesis location density.

One of these active regions is in the South China Sea (SCS),

and the other is over the WP east of the Philippines. We

find that FGOALS-f2 V1.0 (Fig. 2b) captures the TC genesis

FIG. 7. Linear correlation coefficients of TC numbers between

IBTrACS and the ensemble-mean hindcast of FGOALS-f2 V1.0

from July to November during 1981 to 2015. Different colors

indicate the correlation coefficients for different ensemble sizes

(2–24 members).

FIG. 6. As in Fig. 4, but for the NA.
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location pattern, with the model correctly highlighting an

active TC genesis region over theWP east of the Philippines.

However, FGOALS-f2 V1.0 underestimates TC density in

the SCS, reflecting the biases in the large-scale circulation

(e.g., ENSO, MJO, and monsoon) in FGOALS-f2 V1.0

(Chan et al. 1998; Chen 2011). While similar active regions

have been predicted in hindcasts of TC activity (May to

November) in the ECMWF model (Manganello et al. 2016),

which was initialized on 1 May, there was a northward shift

of the TC genesis locations compared with IBTrACS. By

comparison, there is no such bias in the WP TC genesis lo-

cation for FGOALS-f2. The density of TC genesis locations

in the NA is shown in Figs. 2c and 2d. Negative biases appear

in the main development region compared with IBTrACS.

The result is similar to a FAMIL2 simulation, which is the

atmospheric component of FGOALS-f2, in an AMIP-like

run (Li et al. 2019).

The densities of the TC tracks in IBTrACS and the hindcast

of FGOALS-f2 V1.0 are shown in Figs. 3a and 3c for the

WP and in Figs. 3b and 3d for the NA. There are more TCs

to the northeast of the Philippines in the model than in

the observations. Negative biases occur in the SCS, mean-

ing that fewer TCs make landfall in Indochina compared

with observations. This bias in TC tracks in the SCS are

mainly due to fewer TCs forming in the SCS, which indicates

that the medium resolution model is not enough to resolve

TC activity in this region. The northeastward propagation of

TCs in FGOALS-f2 V1.0 compares well with IBTrACS. The

FIG. 8. TC GP index from July to November (JASON) during 1981–2015, based on the (a),(c) ERA-Interim

reanalysis data and (b),(d) data of the FGOALS-f2V1.0 hindcast. Both the GP index in the (top) WP and the

(bottom) NA are shown.
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hindcast of FGOALS-f2 V1.0 underestimates the density

of TC tracks in the NA, particularly between 108 and 208N.

Manganello et al. (2016) compared the seasonal predic-

tion skill for TCs in the NA and found a significant im-

provement in predicted TC tracks when the horizontal

resolution was increased. These results have been verified in

other seasonal prediction systems (Murakami et al. 2016b;

MacLachlan et al. 2015). The active region of TC tracks

in the NA near Florida in FGOALS-f2 V1.0 is comparable

to that of IBTrACS, but TC tracks in the Caribbean Sea

and Gulf of Mexico are underestimated compared with

IBTrACS. The systematic underestimation of TC genesis in

the Main Development Region contributed to the negative

biases of TC tracks in these regions. On the other hand, the

biases in the large-scale background flow led to more TCs

moving northwest in FGOALS-f2V1.0.

Next, we display the Spearman’s rank correlation of

TC track density, which is a widely used statistic to evaluate

the prediction skill for TC tracks (Vecchi et al. 2014;

Manganello et al. 2016; Murakami et al. 2016b), between the

seasonal mean (July to November) of IBTrACS and the

hindcast of FGOALS-f2V1.0. Figure 4a shows the Spearman’s

rank correlation of track density in the WP. A high corre-

lation coefficient is apparent in the TC generation region in

the WP, but there is a low correlation coefficient in the

primary TC development region (1208–1308E, 108–258N),

which seems to be a common problem among prediction

systems (Manganello et al. 2016; Murakami et al. 2016b). In

addition, r . 0.4 in the SCS and near Japan, indicating the

potential for the seasonal prediction of landfalling TCs.

Weak correlation coefficients appear in the NA (Fig. 4b)

compared with other seasonal prediction systems, mainly

due to the negative biases that appear in FGOALS-f2V1.0.

Li et al. (2019) found that the negative biases of TC number

in NA could be improved when increasing the horizontal

resolution.

The interannual variability of TC number and accumulated

cyclone energy (ACE) are shown in Figs. 5 and 6. ACE is a

measure used to calculate the approximate energy over the

lifetime of a TC when the one-minute maximum sustained

winds are equal to or greater than 34 kt (1 kt ’ 0.51m s21).

Thus:

ACE5 1024�y2m , (1)

where ym is the estimated sustained wind speed in knots.

We find a high correlation (r 5 0.60) between predicted

and observed TC numbers (July–November) in the WP

(Fig. 5a). There is a significant correlation between WP TC

numbers and ENSO according to IBTrACS, and the pre-

dicted TC numbers from the model show a similar re-

sponse. The correlation of WP ACE between predicted and

observed numbers (July to November) is 0.65 (Fig. 5b).

However, underestimated values for the hindcast are found

in years when typhoons were generated. These results

mean that the prediction system does not do a good job of

replicating typhoons. Although the correlation coefficient

of TC numbers between observations and the hindcast in

FIG. 9. Biases of the GP index component of TCs between ERA-Interim and the hindcast of

FGOALS-f2 V1.0 from July to November (JASON) during 1981–2015. (a) The wind shear bias

between 200 and 850 hPa. (b) The relative humidity bias at 600 hPa. (c) The potential intensity

bias. (d) The absolute vorticity bias at 850 hPa.
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the NA is high (Fig. 6a), the mean value and amplitude in

the hindcast are weak compared with IBTrACS. Since the

model has a negative bias in TC number and intensity in

the NA, the correlation coefficient of TC ACE (Fig. 6b) is

lower than it is in the seasonal prediction system in GFDL

(Murakami et al. 2016b) and ECMWF (Manganello et al.

2016), where ACE correlations from May initializations

are 0.61 and 0.82, respectively. It is worth noting that

FGOALS-f2 configured with 100-km horizontal resolution

cannot reproduce those years when TC activity was high

over the WP and NA, especially in years when strong TCs

occurred frequently. For example, FGOALS-f2 V1.0 un-

derestimates the TC ACE by 80% in years when strong

TCs occurred frequently (i.e., 1990. 1995, 1998, and 2005).

Although the sign of the anomalies is correct, these un-

derestimations of TC activity in FGOALS-f2 V1.0 affect

the predicted value of both the real-time TC number and

ACE (Fig. A1 in the appendix). Thus, there is still room for

improvement in terms of real-time TC prediction skill of

FGOALS-f2 when considering statistical methods and im-

proving model resolution (Murakami et al. 2016a,b). For ex-

ample, scale ACE from the model to make it match more with

observations.

5. Impacts of the ensemble members

Ensemble prediction schemes are useful for improving sea-

sonal prediction skill of TC activity. Manganello et al. (2016)

found that linear correlations between May to November ob-

served (IBTrACS) and predicted TC frequencies increased

and errors have decreased when the ensemble sizes were in-

creased from 1 to 51. FGOALS-f2 used 24 ensembles for

hindcasts and 35 ensembles for real-time prediction. The sen-

sitivity of the prediction skill to the ensemble size in the

hindcast of FGOALS-f2V1.0 is shown in Fig. 7. The correla-

tion coefficient increases when the ensemble size is increased

from 2 to 24. Even using all 24 ensemble members, the pre-

diction skill of the model does not look to be saturated. The

ECMWF’s TC prediction system uses 51 ensemble members

for seasonal prediction, which is the maximum threshold for

the growth of prediction skill according to Manganello et al.

(2016). We increased the ensemble members from 24 to 35 to

improve TC prediction skill in real time. This approach has

been operationally used in the China Multi-Model Ensemble

Prediction System V1.0 (CMMEv1.0) (Ren et al. 2019), but

the computing cost of the prediction is a constraint for in-

creasing ensemble members. On the other hand, it should be

noted that the increasing trend of the correlation coefficient

is not linear, and the skill tends to saturate for the current

initialization method in FGOALS-f2V1.0 (Manganello et al.

2016; Chakraborty et al. 2020).

6. Genesis potential index and large-scale parameters

We used the genesis potential (GP) index from Emanuel

and Nolan (2004) to investigate the contributions of specific

environmental variables to the genesis of TCs. Camargo

et al. (2007b) used the GP index to diagnose ENSO effects

on TC activity, and found that the GP index succesfully

reproduces the climatology and variability of TC activity

compared with the observations. The GP index used in this

study is defined as follows:

GP5 j105Vort
850

j3/2
�
RH

50

��
V

m

70

�
(11 0:1V

shear
), (2)

where Vort850 is the 850-hPa absolute vorticity (s21), RH is

the 600-hPa relative humidity (%), Vm is the maximum

potential intensity (Emanuel 1995; Emanuel and Sobel

2013), and Vshear is the magnitude of the wind shear between

850 and 200 hPa (m s21). Furthermore, the Vm (the maxi-

mum potential intensity) used in this paper is defined as

follows:

V
m
5

C
k
T

s

C
d
T
0

(CAPE*2CAPEb) , (3)

where Ck is the exchange coefficient of enthalpy, Cd is the drag

coefficient,Ts is the SST, andT0 is themean outflow temperature.

CAPE* is the convective available potential energy (CAPE) of

the air lifted from saturation at sea level, and CAPEb is the

CAPE of the boundary layer air.

Figure 8 shows the GP index calculated from ERA-Interim

data (Figs. 8a,c) and the FGOALS-f2V1.0 hindcasts (Figs. 8b,d)

from July to November for the WP and NA, respectively,

during 1981–2015. In the WP, FGOALS-f2V1.0 reproduces

the pattern of the GP index, consistent with the results using

FIG. 10. (a) Correlation coefficients of SST between the hind-

cast of FGOALS-f2 V1.0 and OISSTv2 from July to November

during 1981–2015, for which the values at the 95% confidence

level are shown. (b) Correlation of the Niño-3.4 index, high-

lighted with the blue rectangle in (a), between FGOALS-f2 V1.0

and OISSTv2.
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the TC detection method. A negative bias appears in the

NA, which reflects the bias of the large-scale pattern in

FGOALS-f2V1.0. Next, we display the differences in wind

shear (Fig. 9a), 600-hPa relative humidity (Fig. 9b), potential

intensity (Fig. 9c), and 850-hPa vorticity (Fig. 9d) between

ERA-Interim and the hindcast of FGOALS-f2V1.0 to high-

light the error sources that contribute to the GP index. Positive

wind shear biases appear in the NA, which is unfavorable for

the formation of TCs in these basins. The systematic positive

bias of 600-hPa relative humidity reflects vigorous evapo-

ration in the surface layer, and this anomalously high level

of water vapor reaches the middle troposphere with con-

vective activity, consistent with previous studies (Wang et al.

2019a,b). Camargo et al. (2007b) found that vertical wind

shear and midlevel relative humidity are important for TC

formation, and the increase in relative humidity provides a

more favorable environment for TC development. In addi-

tion, the negative biases of potential intensity and 850-hPa

vorticity in the WP and NA reflect the negative biases of

TC number and TC intensity in FGOALS-f2 V1.0. On the

other hand, Camargo et al. (2020) found that there is no

specific association between a conducive environment and

TC activity in low-resolution models, and the relationship

between the models’ TC characteristics and environmental

characteristics is strengthened when the model’s resolution is

increased.

7. Response of ENSO

There aremany studies that have focused on the relationship

between ENSO and TC activity in the WP and the NA (Wang

and Chan 2002; Tang and Neelin 2004; Camargo and Sobel

2005; Kim et al. 2009; Domeisen et al. 2015). Wu and Lau

(1992) used a coupled GCM from GFDL to discuss the rela-

tionship betweenENSO andTC activity, but the significance of

their results was not tested. They found a below-normal fre-

quency of TCs in the WP in El Niño years, and more TCs oc-

curred in the western South Pacific and western NA in La Niña
years. Figure 10a shows the correlation between predicted and

observed global SST from 1981 to 2015 (July to November).

High correlation coefficients appear in both the WP and NA,

which is likely one of the reasons why both basins have sig-

nificant seasonal TC prediction skill. Furthermore, the corre-

lation of the Niño-3.4 index between the predictions and

FIG. 11. Seasonal mean (July–November) track density of the TC difference between El Niño and La Niña years
for (a),(b) OISSTv2 and (c),(d) the hindcast of FGOALS-f2 V1.0 in the (left) WP and (right) NA. El Niño years

used in this figure are 1982, 1986, 1987, 1991, 1994, 1997, 2002, 2004, 2006, 2009, and 2015; La Niña years used in this

figure are 1983, 1984, 1988, 1995, 1998, 1999, 2000, 2007, 2010, and 2011. Blue (red) anomalies show a negative

(positive) El Niño effect.
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OISST is 0.86 (Fig. 10b), which reflecting a robust ENSO re-

sponse in FGOALS-f2V1.0.

Figure 11 shows the difference in track density between El

Niño and La Niña years during 1981–2015 (Camp et al. 2015;

Vecchi et al. 2014; Manganello et al. 2016; Shaevitz et al. 2014).

We used the sameENSOdefinition as Camp et al. (2015)—that

is, El Niño and La Niña years are defined by the average

SST (August–October) anomaly being greater than 0.58C
and less than 20.58C in the Niño-3.4 region, respectively.

There are 11 El Niño years (1982, 1986, 1987, 1991, 1994,

1997, 2002, 2004, 2006, 2009, and 2015) and 10 La Niña years
(1983, 1984, 1988, 1995, 1998, 1999, 2000, 2007, 2010, and 2011)

using this definition in the hindcasts of FGOALS-f2V1.0. Over

the WP, observed TC activity increases east of the Philippines,

FIG. 12. Seasonal anomaly (July–November) of TC track density in theWP from 2017 to 2019 (unit: number per

season). The TC density is analyzed in a 18 3 18 grid box with 6-h intervals, and the unit of the color map is number

per season (July–November). (a),(d),(g) The 35-ensemble-member mean results of FGOALS-f2 V1.0 in the WP,

and (b),(e),(h) the IBTrACS observations. (c),(f),(i) The anomaly percentage (%) of TC numbers andACE for the

entire WP basin from 2017 to 2019.
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while it is reduced in the SCS when strong El Niño events

occur (Fig. 11a). In the NA, observed TC activity decreases

when strong El Niño events occur (Fig. 11b). These phe-

nomena are captured well by FGOALS-f2 V1.0. While the

effects of lifetime, intensity, and frequency all contribute

significantly to the ENSO signal in ACE, there is a more

significant correlation between TC ACE and ENSO in the

WP compared to that between TC number and ENSO. One

possible reason for this result is that there is a shift within the

basin in the specific region of TC activity, which is modulated

by the large-scale environment. ACE generally increases in

the WP in El Niño year is due to TC formations shifting

eastward and southward, leading to longer storm lifetimes

and likely overall higher storm intensities (Camargo and

Sobel 2005).

8. Real-time seasonal prediction of TCs

Real-time seasonal prediction of TC activity is still a

challenge, but is of scientific value and is also a reference for

disaster prevention and mitigation. A number of interna-

tional modeling centers have begun real-time seasonal pre-

diction of TC activity (Vitart and Robertson 2018; Murakami

et al. 2018; MacLachlan et al. 2015; Klotzbach et al. 2019).

However, dynamical seasonal prediction of TCs is still in its

early stages (Wang et al. 2015). From 2017, FGOALS-f2V1.0

began carrying out real-time seasonal prediction of TCs in the

WP. The prediction ensemble size was increased from 24 to

35 from the hindcasts to the forecasts. Figure 12 shows the

seasonal anomalies (July–November) of track densities in the

WP from 2017 to 2019. Observed TC activity from July to

November 2017 (Fig. 12b) is less than the climatology, and TC

activity in the SCS is more frequent than it is at higher lati-

tudes. By contrast, TC activity from July to November 2018

(Fig. 12e) is more frequent at higher latitudes. The pattern of

track densities from July to November 2019 (Fig. 12h) is

similar to what it is in 2018 (Fig. 12e), but 2018 TC activity

in the SCS is more frequent than it is in July to November

2019. The ensemble-mean prediction of TC activity patterns

in FGOALS-f2V1.0 (Figs. 12a,d,g) are similar to the results

of IBTrACS. In addition, the predicted anomaly percentage

of TC numbers and ACE in the WP is reasonable com-

pared to IBTrACS. However, the amplitude of the ACE in

FGOALS-f2V1.0 is smaller than it is in IBTrACS. Similar

results for seasonal prediction of TCs in the NA are shown in

Fig. A1. Furthermore, the percentage anomalies of land-

falling TC numbers in the provinces of China are shown in

Table 2. Predictions were of better quality for Guangdong

and Jiangsu, while the worst prediction was for Hainan.

However, it is worth noting that it is hard to make any

comments about definitive model skill (or lack of skill)

based off of just three years of data, especially for regional

forecasts.

9. Monthly prediction of TCs

Figure 13 shows the one-to-three-month lead correlations

for the monthly (July–November) TC numbers between

IBTrACS and the hindcast of FGOALS-f2 V1.0 in the

WP. Correlations improve with decreasing prediction in-

terval, reflecting the potential for the prediction system to

make skillful subseasonal TC predictions for the WP. The

monthly rank correlation of track density (July–October)

between IBTrACS and the hindcast of FGOALS-f2 V1.0

is shown in Fig. 14. High correlations appear in the areas

where most TC genesis, and correlations for landfalling

TCs also increase. The same results for monthly prediction

FIG. 13. Linear correlation coefficients of monthly TC fre-

quency between IBTrACS and the ensemble-mean hindcast of

FGOALS-f2V1.0 from 1981 to 2015. The colors in the heat map

are the correlation coefficients for a 1–3-month lead time for July–

October.

TABLE 2. Seasonal anomalies (July–November) of landfalling TCs in the provinces of China from 2017 to 2019 (%).

Province 2017: FGOALS/Obs 2018: FGOALS/Obs 2019: FGOALS/Obs

Hainan 23%/233% 25%/42% 224%/233%

Guangxi 225%/230% 12%/26% 43%/230%

Guangdong 21%/30% 231%/238% 240%/230%

Fujian 30%/53% 26%/20% 215%/25%

Zhejiang 222%/234% 13%/30% 212%/43%

Jiangsu 222%/234% 11%/50% 25%/46%
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of NA TC activity are shown in Figs. A2 and A3. In the

future, the next generation of the dynamical prediction

system from CAS/IAP/LASG will make daily ensemble

predictions, and the results will be uploaded to the S2S

project (Vitart and Robertson 2018; Vitart et al. 2017). In ad-

dition, the prediction skill for TC activity on subseasonal time

scales (Camp et al. 2018, 2019; Gao et al. 2019) will be more

fully evaluated in the future.

10. Summary and conclusions

A dynamical seasonal prediction system, FGOALS-f2V1.0,

was developed by CAS/IAP/LASG based on the FGOALS-f2

climate system model. A 35-yr hindcast with 24 ensemble

members was used to evaluate the seasonal prediction skill

for TC activity in the WP and NA. The hindcast TC pre-

diction are initialized from 20 June, and the target season is

from July to November, which is the climatological peak

period for TC activity. Li et al. (2019) evaluated the simu-

lation performance of TC activity in FAMIL2 (100-km

horizontal resolution), which is the atmospheric compo-

nent of CAS FGOALS-f3 (He et al. 2019), and the results

from that study indicated that FAMIL2 can reasonably re-

produce the genesis locations, tracks, and numbers of TCs.

Thus, the indication is that the model can capture TC signals

at a medium horizontal resolution scale (100 km) (Zhao

et al. 2018a). The advantages of using a medium horizontal

resolution scale are the smaller computational expense and

the larger number of ensemble members compared with

high-resolution model.

FIG. 14. Monthly (July–October) rank correlations between IBTrACS and the hindcast of FGOALS-f2V1.0 in

the WP based on the track density of TCs. The 24-ensemble-member and 35-yr data are analyzed in a 58 3 58 grid
box with 6-h intervals. Color shading indicates that the correlation coefficients are significant at a two-sidedP5 0.1

level. The gray shading indicates the regions where the observed track density is nonzero for at least 25% of the

years (approximately 9 years).
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In summary, FGOALS-f2V1.0 can reproduce the seasonal

(July–November) density of TC genesis locations and tracks

in the WP, but underestimates the seasonal density of TC lo-

cations and tracks in the NA. The correlation between ob-

served TC numbers and model hindcasts is 0.60 (significant

at the 95% level) and 0.61 (significant at the 95% level) in

the WP and the NA, respectively. However, the correlation

coefficients of ACE are lower than those reported in other

studies (Manganello et al. 2016; Camp et al. 2015; Murakami

et al. 2018), reflecting the negative bias of predicted TC in-

tensity in FGOALS-f2V1.0. Strachan et al. (2013) discussed

the advantages of increased horizontal resolution when sim-

ulating TCs, and they found a distinct positive correlation

between horizontal resolution and the simulated intensity of

TCs. We find that increasing the number of ensemble mem-

bers helps to improve the seasonal prediction skill for TCs.

The model’s ability to represent both ENSO and its associ-

ated modulation of the GP index contributes to the seasonal

prediction skill for TC activity in the WP and the NA. Also,

FGOALS-f2 V1.0 shows skillful real-time seasonal prediction

skill for TC numbers, tracks, ACE, and landfalling TCs in

China during 2017–19. FGOALS-f2 V1.0 shows a consider-

able monthly prediction skill for TCs in the WP and NA.

In the future, we intend to increase the horizontal resolu-

tion in FGOALS-f2V1.0 from 100 to 25 km, consistent with

FGOALS-f3-H in HighresMIP (Bao et al. 2020). Murakami

and Sugi (2010) found that the intensities, interannual vari-

ability, and seasonal cycle of simulated TCs could be im-

proved when their model’s horizontal rsolution was increased

from TL95 (180-km mesh) to TL959 (20-km mesh). Given

other modeling centers’ improvements in TC prediction using

higher resolutions, we believe that we too will find similar

improvements in skill.
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APPENDIX

Prediction Skill of TC in NA

a. Real-time seasonal prediction of TCs in the NA

The seasonal anomaly (July–November) of track density in

the NA from 2017 to 2019 (Fig. A1).

b. Monthly prediction of TCs in the NA

Figure A2 shows the 1–3-month leading correlation coeffi-

cients of the monthly (July–November) TC numbers between

IBTrACS and the hindcast of FGOALS-f2V1.0 in the NA.

The monthly rank correlation of track density (July–October)

FIG. A2. As in Fig. 13, but for the NA.

FIG. A3. As in Fig. 14, but for the NA.
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between IBTrACS and the hindcast of FGOALS-f2V1.0 is

shown in Fig. A3.
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