Journal Pre-proof

Impacts of the Tibetan Plateau on aridity change over the Northern Hemisphere

Zhaokui Gao, Xiaodan Guan, Bian He, Long Zhao, Yongkun Xie, Yongli He, Fei Ji

PII:	S0169-8095(22)00456-2
DOI:	https://doi.org/10.1016/j.atmosres.2022.106470
Reference:	ATMOS 106470
To appear in:	Atmospheric Research
Received date:	23 May 2022
Revised date:	7 September 2022
Accepted date:	11 October 2022

Please cite this article as: Z. Gao, X. Guan, B. He, et al., Impacts of the Tibetan Plateau on aridity change over the Northern Hemisphere, *Atmospheric Research* (2022), https://doi.org/10.1016/j.atmosres.2022.106470

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier B.V.

Impacts of the Tibetan Plateau on Aridity Change over the Northern Hemisphere

Zhaokui Gao^a, Xiaodan Guan^{a*}, Bian He^b, Long Zhao^c, Yongkun Xie^a, Yongli He^a, and Fei Ji^a

^a Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China.

^b State Key Laboratory of Numerical Modeling for Atmospheric S iences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 101408, China.

^c School of Geographical Sciences, Southwest University, Chongving 400715, China.

*Corresponding author: Xiaodan Guan (guanxd@lzu.edu.c.)

Solution

Abstract

Aridity change in the Northern Hemisphere (NH) is a vital topic in exploring climate change. The Tibetan Plateau (TP) is essential for its role in climate variability over the NH. We applied the ensemble empirical mode decomposition (EEMD) to the aridity index (AI) from 20°-60°N in this study. The EEMD method extracts a set of intrinsic mode functions (IMFs) with various timescales. Results from our analysis reveal that the multi-decadal oscillation of AI makes 35% contribution to the variability of the AI. And the multi-decadal oscillation of the TP thermal forcing makes 18.15% contribution to the multi-decadal variability of the AI, which is often ignored in previous studies. The dynamic and thermal effects of the TP also affect the AI change, which illustrates a mode of meridional difference aroun.¹ 40 N, with wetting in the north and drying in the south. Meanwhile, the dynamic effects of he 'P lead to latitudinal differences over South Asia, southeast Asia and southern China arc controlled by a high-pressure system from 850 hPa up to 500 hPa, which results in an increase of sinking motion from 20°-40°N with obvious continuous drying effect.

Key words: Tibetan Plateau; aridity index, multi-decadal variability; dynamic effect; thermal effect

1 Introduction

The Tibetan Plateau (TP) is located in subtropical Asia, with an average elevation of over 4,000 meters and complex la. dsc ape (Chen et al., 2021; Wen et al., 2021). As the largest plateau on Earth, it covers 2.5 millior square kilometers, approximately 25% of China's land area (Jane, 2008; Xu et al., 2008B). As the TP stores a large amount of terrestrial water in its lakes, rivers, snow, and glaciers, it is named the global atmospheric "water tower" (Xu et al., 2014; Qiao et al., 2021). In summer, the atmospheric moisture over the TP is higher than that over its surrounding areas (Xu et al., 2008A; He et al., 2021); and the moisture can be transported from the surface layer to the stratosphere, affecting the global troposphere-stratosphere moisture budget (Chen et al. 2012). The land-atmosphere coupling of the TP has profound implications for global climate due to its location, altitude, area, steep slopes, and abundant water resources (Ma et al., 2008; Liu, Y.Z. et al., 2020). In particular, the dynamic and thermal forcing of the TP may play a critical role in

regional climate (Ma, J. et al., 2017; Wu et al., 2020), and further influence the aridity in the Northern Hemisphere (NH) (Chen et al., 2021; Sun and Liu, 2021).

The uplift of the TP has had a profound and sustained impact on the current global climate (Liu and Dong, 2013). It increases the thermal difference between land and ocean, becoming a heat source in summer (Ye and Wu, 1998; You et al., 2020). The thermal forcing over the TP generates a monsoonal meridional circulation over South Asia, and sets up favorable large-scale ascent condition for the development of the Asian summer monsoon (ASM) (Yanai et al., 1992; Ma W.Q. and Ma Y.M., 2016). The division of the westerlies into southerr and northern branches by the dynamic effect of the TP leads to the blockage of the ASM and cuentually to the aridity of East Asian inland. It can also increase the aridity of inner Asia by blocking water vapor from the nearby ocean and inducing sinking airflow (Ye and Gao, 1979; Sumand Liu, 2021).

Changes in thermal forcing over the TP affect itmospheric circulations, contribute significantly to precipitation over downstream regions, and rurther impact the aridity over the NH (Zhang et al., 2006; Ma, Y.M. et al., 2017). 'CP brating leads to the meridional shift of the subtropical and mid-latitude westerly jet (SW), and an extension of the South Asian high (Liu, Y.M. et al., 2020). The atmospheric circulations, especially the ASM and westerly jet, play important roles in transporting water rapor and clouds from the TP (Zhang et al., 2006). Simultaneously, the TP acts as a character for driving water vapor, clouds and aerosols from the surface layer to the stratosphere 'Zhang et al., 2006; Xu et al., 2018).

Aridity is commonly defined by the ratio of precipitation (P) to potential evapotranspiration (PET) (Middleton and Thomas, 1997). Increased aridity leads to severe soil moisture deficits, decreases in carbon uptake, and an expansion of global drylands, altering landscapes, ecosystems, and the conditions people live in (Lickley and Solomon, 2018). Regions with P/PET <0.65 are defined as drylands, which are sensitive and vulnerable to climate change (Prvlie, 2016). Large areas of drylands are located in the mid-latitudes of the NH, which are inhabited by large population (Prvlie, 2016), with the highest population density distributed in South and East Asia, North Africa, and the Middle East (Zhang and Zhou, 2015).

Previous studies attributed the decadal variation of aridity to dynamic oscillations, such as the Atlantic Multi-decadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), Arctic Oscillation (AO), and El Niño-Southern Oscillation (ENSO) (Wang et al., 2007; Chang et al.,2004; Wang et al., 2014; Guan et al., 2017; Li et al., 2019). The effects of the apparent heat source Q_1 of the TP on aridity changes over the NH received less attention. In this study, we quantified the effects of the Q_1 on aridity change in the NH, and explored the impacts from the uplifted TP on aridity in the NH. Terrain sensitivity experiments from the Global Monsoons Model Intercomparison Project (GMMIP) were used to investigate the sustained impact from the TP on aridity (Zhou et al., 2019; He et al., 2020). We first analyzed the effect from the TP on the aridity change on multi-decadal time scales, and explored the dynamic and thermal effects from the TP on aridity with three sensitivity experiments. This paper is organized as follows. In sections 2, we describe the data and analysis methods. The analysis of results is in section 3. Conclusions and discussion are presented in sections 4.

2 Material and methods

2.1 Material

2.1.1 Aridity Index

The aridity index (AI) is denoted as fo¹¹. vs.

$$AI = \frac{P}{PET} \quad (1)$$

we calculate the AI as in Huang α al. (2020). The precipitation data we use is PRECipitation REConstruction over Land (PFECC) dataset (Chen et al., 2002) developed at the Climatic Prediction Center (CPC) of National Oceanic and Atmospheric Administration (NOAA), which is on 0.5°, covering the period from 1948 to the present. The PET data is from the Climatic Research Unit (CRU) TS 4.06 data et (Harris et al., 2014), which covers the period of 1901-2021 with a resolution of 0.5°. The observed precipitation and PET data are provided by Feng and Fu (2013).

We calculated the AI using Eq. (1) and monthly Chinese Academy of Sciences (CAS) Flexible Global Ocean-Atmosphere-Land System (FGOALS-f3-L) model outputs. Using near-surface air temperature (*TAS*), 2-m wind speed (|u|), relative humidity (*RH*), heat flux into ground (*G*), and the net downward broadband radiation (*R_n*), we calculated simulated *PET* using the Penman-Monteith algorithm (Penman, 1948; Monteith, 1981; Allen et al., 1998), as shown below,

$$PET = \frac{\left(R_n - G\right)\Delta(TAS) + \rho_a C_p e^*(TAS)(1 - RH)C_H |u|}{\Delta(TAS) + \gamma \left(1 + r_s C_H |u|\right)} / L_\nu \quad (2)$$

where Δ is the slope of the Clausius-Clapeyron curve, ρ_a is air density, C_p is the specific heat of air, $e^*(TAS)$ is the saturated water vapor pressure at given TAS, $C_H \approx 4.8 \times 10^{-3}$ is the bulk transfer coefficient, $r_s \approx 70s/m$ is the bulk stomatal resistance, L_v is the latent heat of water vaporization, and γ is the psychrometric constant. $(R_n - G)$ in climate model outputs could be replaced by the sum of sensible heat (*SH*) and latent heat (*LH*). (Allen et al, 1998; Fu and Feng, 2014; Scheff and Frierson, 2014; Wei et al., 2019)

The CAS-FGOALS-f3-L modeling team completed Ph. se 6 of the Coupled Model Inter-comparison Project (CMIP6) Global Monsoons Model Inter-comparison Project (GMMIP). GMMIP Tier-1 historical simulation (hist) and GMMIF Tie -3 simulations are used in this paper. Specifically, the Tier-3 simulations are one $\operatorname{orogr}_{PP}$ is perturbation experiment that removes the topography of the Tibetan-Iranian Plateau (TIP) of a final developed by 500 m (referred to as NTIP), and one thermal perturbation experiment that the sensible surface heating over the TIP and surrounding regions at altitude above 500 m (referred to as NTIP-nosh). The outputs cover the period 1979 to 2014 with a resolution of $1.0^{\circ} \times 1.25^{\circ}$ (latitude × longitude). The variant label of the outputs is r1i1p1f1 (Zhou et al., 2019, He et al., 2020).

2.1.2 Apparent Heat Source Q_1

Following previous invertigations (Yanai et al. 1973; Yanai and Tomita 1998), apparent heat source Q_1 can be calculated using

$$Q_{1} = c_{p} \left(\frac{p}{p_{0}}\right)^{\kappa} \left(\frac{\partial \theta}{\partial t} + V \bullet \nabla \theta + \omega \frac{\partial \theta}{\partial p}\right)$$
(3)

where θ is potential temperature (units: K), V is horizontal wind (units: m/s), ω is the vertical velocity on isobaric surface (units: Pa/s), p is pressure (units: Pa), $p_0 = 1000$ hPa, and $\kappa = \frac{R}{c_p}$ (units: J/(kg)). R and c_p are the gas constant and specific heat at constant pressure of dry air, respectively. ∇ is the isobaric gradient operator.

The vertically integrated apparent heat source Q_1 was obtained by integrating Eq. (3), where p_s is surface pressure level. As the average elevation of the TP is approximately 4000 m, the minimum of p_s used in this study is 600 hPa; thus,

$$Q_{1} = \frac{1}{g} \int_{100}^{p_{s}} Q_{1} dp \quad (4)$$

Note that positive (negative) Q_1 indicates a net heat gain (loss). We calculated Q_1 according to the method mentioned in Liu et al. (2021); and we kept the climatology of Q_1 consistent with that provided by Liu et al. (2021).

2.1.3 Oscillation Indices

Four climate indices of the Nino3.4, PDO, AMO, and A(), and taken from the KNMI Climate Explorer. The Nino3.4 index is the sea-surface temperatures (SST) anomaly averaged over $(170^{\circ}-120^{\circ}W, 5^{\circ}S-5^{\circ}N)$ (Trenberth, 1997). The PDO hade tis defined as the leading Empirical Orthogonal Function (EOF) pattern and associated time series of monthly SST over $(110^{\circ}E-100^{\circ}W, 20^{\circ}-70^{\circ}N)$, with global mean \therefore S1 series removed (Mantua et al., 1997). The AMO index is defined as the SST average 1 c ver (0°-80°W, 0°-70°N), by subtracting mean SST over 60°S-60°N (Enfield et al., 2001; 1. enberth and Shea, 2006). The AO index is defined as the standardized leading principal component time series of monthly mean NH sea-level pressure for all months of the year (Thompson and Wallace, 1998). Note that the four indices of the Nino3.4, PDO, AMO, and AO cover the Period from 1950 to 2021, to coincide with the period of the Q₁ data.

2.2 Methods

2.2.1 Wavelet Decomposition

Wavelet analysis can describe non-stationary signals whose frequencies vary with time. Readers may refer to Torrence and Compo (1998) for a detailed introduction to wavelet analysis. A continuous wavelet analysis is used to identify the primary frequency of the AI, and to explore the change of this frequency over time. The analysis decomposes a signal into a series of wavelets obtained by scaling and shifting the basic functions. The wavelet basis function is shown in Eq. (5). The wavelet transform has two parameters: scale parameter a and translation parameter τ . a corresponds to frequency, and τ corresponds to time:

$$\Psi_{a,b}(t) = \frac{1}{\sqrt{a}} \Psi\left(\frac{t-b}{a}\right)$$
(5)

The continuous wavelet transform is performed on signal X(t) to generate the wavelet spectrum, which is defined as follows,

$$X(a,b) = \int_{-\infty}^{+\infty} X(t) \frac{1}{\sqrt{a}} \Psi\left(\frac{t-b}{a}\right) dt \quad (6)$$

The software of wavelet decomposition in IDL is available at https://paos.colorado.edu/research/wavelets/.

2.2.2 Ensemble Empirical Mode Decomposition Method

The ensemble empirical mode decomposition (EEMD) nethod was adopted in this study to decompose the time series of the AI. This method is an adaptive and noise-assisted data analysis method, suitable for non-stationary and nonlinear signal detection. Original climate signals can be decomposed into different oscillatory components with different time scales (intrinsic mode function [IMF]) and trends. The steps can be brufly described as follows (Huang et al. 1998; Wu and Huang 2009)

(1) Add a white noise time series to the targeted data series x(t);

(2.1) Set $x_1(t) = x(t)$ and identify at the maxima and minima of $x_1(t)$, connect all maxima points to obtain the upper envologies $e_u(t)$ and connect all minima points to obtain the lower envelope $e_1(t)$ with cubic splines, respectively;

(2.2) According () the gi /en criteria, calculate the mean m(t) between the two envelopes;

$$m(t) = [e_u(t) + e_l(t)]/2$$
 (7)

Then, determine whether m(t) is close to zero (equivalent to the symmetric of the upper and lower envelopes about the zero line) at any location;

(2.3) If yes, stop the screening process; if not, set $x_1(t) = x(t) - m(t)$ and repeat steps 2.1 and 2.2;

(2.4) After this, the original time series x(t) can be expressed as the first intrinsic mode function (IMF) and a remainder. If the remainder still contains oscillatory components, we again repeat steps 2.1 and 2.2, but set $x_1(t)$ as the remainder.

Therefore, each time series can be expressed as the sum of different IMFs and a remainder, which can be expressed as:

$$x(t) = \sum_{j=1}^{n} C_{j}(t) + R_{n}(t) \quad (8)$$

where n indicates the number of IMFs, $C_j(t)$ indicates the j_{th} IMF, and $R_n(t)$ denotes the final remainder that is either monotonic or contains only one extreme.

(3) Repeat steps 1 and 2 again and again, but add different white noise time series each time and obtain the (ensemble) means for corresponding IMFs of the decompositions as the final result. According to Ji et al. (2014), noise added to the data has an amplitude that is 0.2 times the standard deviation of the raw data; and the ensemble number is 40°. The EEMD codes are from Dr. Zhaohua Wu in MATLAB (Wu's website: https://www.comps.ibu.edu/zhaohua-wu).

3 Results

3.1 Changes of Aridity

Regions with AI <0.65 are defined as d.y. no. which are further classified into four subtypes of hyperarid (AI <0.05), arid (0.05 <AI <0.2), remiarid (0.2 <AI <0.5), and dry subhumid (0.5 <AI <0.65) regions (Middleton and Thomas 1>97). The drylands of the world are mainly distributed in the mid and high latitudes of the NH. File drylands are mainly distributed in North Africa, the Iberian Peninsula, West Asia, central Asia, Northwest China, the Mongolian Plateau, and the western United States. The huntid regions are mainly distributed in Europe, north of 50°N, South China, the southern foothics of une Himalayas, east of 120°E, and eastern North America. Figure 1 shows apparent spatial metrogeneity, with latitudinal distribution in East Asia and longitudinal distribution in North America.

Figure 1. Spatial distribution of observed AI climatology during 1991-2020 from 20° to 60°N.

The time series of the AI shows an increasing trend from 1948 to 1983 (the first blue shading period in Figure 2a). Then, the AI decreased significantly from the early-1980s to the early-2000s (the red shading period), followed by a significant increase to its highest point of 0.48 in 2020 (the second blue shading period). Li et al. (2019) noted that the AI showed significant differences before and after 1980, and it also changed significantly around the 2000s. The 11-year running mean of annual AI (red curve) shows that the AI has experienced evident multi-decadal variability with distinct downward and upward phases.

By applying the wavelet decomposition to the time series of AI anomalies over the NH from 20° to 60°N, we computed the wavelet power spectrum of the AI to examine its multi-decadal variation. The local spectrum of the AI is shown in Figure 2b, and the global spectrum is in Figure 2c. A continuous regions of 58-66-year cycle passed the 95% dignificance test during 1948-2021. Significant power can also be found at 11-14-year cycle, while only periods of 1948-1960 and 1980-2021 pass the significant test. The dominant period of the AI is 58-66-year from 1948 to 2021. There is also a 3.5-year period that passed the 95% significance test around 1990. After detrending the AI, the multi-decadal variability (58-66-year) is dominant in the global spectrum of the AI, with global power greater than 0.15 and reaching its maximum of 0.65 around the 66-year cycle.

Figure 2. (a) Time series of regional-mean detrended, normalized AI anomaly over the NH from 20° to 60°N during 1948-2021. The red curve is the 11-year moving average. Red (blue) shading denotes decreased (increased) period of the AI. (b) Wavelet spectra of AI anomaly over the NH during 1948-2021. The black line indicates the 95% confidence level. (c) The global power spectrum of AI with the 95% confidence level.

As the EEMD method can split the evolution of AI variability into long-term trend and oscillation components (Liu et al., 2021), we further applied the EEMD method to decompose the time series of AI anomaly in the NH from 20° to 60°N, which covers the period from 1948 to 2021. We obtained five IMF components (C1-C5) and a long-term trend (C6) (Figure 3). The five IMF

components reflect the variation characteristics from high to low frequency at different timescales. The oscillation cycles of C1 and C2 are about 3 and 7 years, respectively. The oscillation cycles of C3, C4, and C5 are about 13, 28, and 71 years, respectively, which are induced mainly by the internal climate variability (ICV) (Huang et al., 2017). The long-term trend is closely associated with radiative forcing (Luo et al., 2019).

Figure 3. EEMD decomposition of the time series of normalized AI anomaly over the NH land from 20° to 60°N during 1948-2021. C1 to C5 represent five IMFs from high to low frequency, while C6 is the long-term trend.

According to the IMF components with different oscillation cycles, we rebuilt the IAV, IDV, MDV, and the long-term trend of the AI anomalies from 1948 to 2021 in Figure 4. IMFs C1 and

C2 are at the interannual timescale, so their sum is called the interannual variability (IAV; black curve in Figure 4). IMF C3 is named as the inter-decadal variability (IDV; yellow curve in Figure 4). IMFs C4 and C5 are at the multi-decadal timescale, so their sum is named as multi-decadal variability (MDV; red curve in Figure 4). The long-term trend is the residual (C6; blue dashed curve in Figure 4). When the MDV is in an upward phase, it dominated the uptrend of the AI (wetting) from 1948 to 1960, 1970 to 1980 and from 2000 to 2021. When the MDV is in a downward phase, it dominated the downtrend of the AI (drying) from 1980 to the 2000s.

Figure 4. Time series of normalized annual-mean AI anomaly in the NH from 20° to 60° N (grey bar), interannual variation (IAV; black curve), inter-decadal variation (IDV; yellow curve), multi-decadal variation (IAD'; red curve), and the long-term trend (blue dashed curve) obtained by EEMD decomposition over the period from 1948 to 2021. Red (blue) shading denotes the negative (positive) period of the MDV.

Table 1. Contributions of IAV, IDV, and MDV components to AI.

IAVIDVMDV

49%16% 35%

Table 1 shows contributions of the IAV, IDV and MDV components to the AI. The IAV and IDV components contribute 49% and 16% respectively. As the dominant component of the AI, the MDV contributes 35%. The contribution of the MDV makes the second most contribution to the

variability of the AI. To explore the spatial variation of the AI at different timescales, we decomposed the temporal record of the AI in each location, and plotted the evolution of zonally averaged annual-mean anomalies, IAV, IDV, and MDV of the AI in Figure 5.

In Figure 5a, the zonal patterns of the annual-mean anomalies of the AI show significant differences prior to and after 2000. The AI in 20°-60°N underwent significant wetting from 1948 to the 1990s, followed by subtle drying from the 1990s to 2021. The wetting was obvious in 30°N and 40°-60°N from 1948 to 2000. The IAV of the AI changes at a very high frequency and has complicated characteristics at different latitudes (Figure 5b). The IDV of the AI has different variation in 20°-40°N, 40°-50°N and 50°-60°N. The MDV has distinct dry and wet variation (Figure 5c); and its phase changes similarly at different latitudes. It is inderwent significant wetting in 20°-60°N from 1948 to the 1990s, followed by subtle dry ing from the 1990s to 2021.

Figure 5. (a) Evolution of zonally averaged annual-mean AI anomalies from 1948 to 2021 over 20°-60°N. (b), (c) and (d) are the same as (a), but for the IAV, IDV and MDV components of the AI, respectively.

3.2 Effects of apparent heat source Q_1 over the TP on aridity change in the NH

According to previous results, the MDV is closely associated with ocean oscillation (Guan et al., 2015, 2016, 2019). To explore the multi-decadal effect of the TP on NH aridity, we calculated the effect of Q_1 on the MDV. We regressed the MDV component of the AI over the NH during 1950-2021. The EEMD method was applied to decompose each index (AO, AMO, Nino3.4, PDO, and Q_1). We obtained six IMFs for each index, and selected the multi-decadal components of each index (IMFs 4 and 5) to regress the MDV component of the AI by using the stepwise multiple linear regression (MLR) method. The regressed MDV can be expressed as follows,

$$AI_{MDV} = -1.45AMO_5 - 34.37AMO_6 - 12.22AO_6 - 1.15Nino_5 - 119.5Nino_6 + 1.16PDO_5$$

-8.90PDO_6 + 2.91Q_5 + 18.35Q_6 (9)

The regression-based approximation of the MDV component can explain most of its variance using the indices of the AMO, Q_1 , AO, Nino3.4, and PD J, with contributions of 62.21%, 18.15%, 7.85%, 7.56%, and 4.23%, respectively (Table 2).

Table 2. Contributions of AMO, Q_1 , AO, Nmo2 \cdot , and PDO to the regression of the MDV of AI.

 AMO
 γ_1 AO
 Nino3.4 PDO

 62.21%13..5%7.85%
 7.56%
 4.23%

3.3 Sustained impacts of dynamic and thermal effects of the TP on aridity

Although the Q_1 contribution is much lower than the effects of AMO, the role of the Q_1 on aridity change over the NF cannot be ignored, and the Q_1 -AI relationship is statistically significant. The thermal forcing of the TP has significant influence on the AI. The partial correlation between the MDV of Q_1 and that of the AI is 0.81, which passed the 95% significance test. Figure 6 shows the spearman's correlation coefficients between the MDV of the AI and that of Q_1 from 1950 to 2021; most of the areas passed the 95% significance test. The AI and Q_1 have positive relationship in Europe, North Africa, central Asia, the Mongolian Plateau, and western Canada; and they have negative relationship in the TP, South Asia and southeastern United States. From 20° to 60°N, 59% of the grid points has the spearman's correlation coefficient above 0.3; and 6%, above 0.8. In Asia, Q_1 influences were particularly significant, 66% of the grid points has the spearman's correlation coefficient above 0.3; and 8%, above 0.8.

Figure 6. The spearman's correlation coefficient between the DMO of the AI and that of Q_1 from 1950 to 2021. Stippling indicates the 95% confidence level.

In addition to the effects of the Q_1 on aridity change in the NH, the uplift of the TP also has sustained impact on the aridity of the NH. The differences of the AI bet yeen sensitivity simulation without the TP (NTIP-nosh simulation and NTIP simulation) and that with the TP (historical simulation) over 1979-2014 are shown in Figure 7. The the rmml effect of the TP on the AI; more precisely, the influence of the decrease of TP sensible surface heating to the AI is shown in Figure 7a. The influence on Asia is obvious.

Figure 7. (a) Difference of AI between NTIP-nosh and historical simulations over 1979-2014. The blue area represents the wetting effect of the TP, and vice versa. (b) Difference of AI between NTIP and historical simulations over 1979-2014. The blue area represents the wetting effect of the TP, and vice versa. Stippling indicates the 90% confidence level.

In Figure 7a, the drying effect due to the decrease of sensible surface heating of the TP appears over the south and east of the TP; this effect is mainly limited south of 40°N and in Northeast Asia. On the contrary, the wetting effect is over the rest of the NH including North America. Such significant differences between sensitivity experiments without and with the sensible surface heating of the TP (NTIP-nosh and historical simulations) show clear influence of the thermal change of the TP on aridity change. In NTIP, we removed the topography of the TIP at altitude above 500 m. So, Figure 7b shows the dynamic effect of the TP on the AI, due to the influence of removing the TP. The influence on Asia is obvious.

When the TP topography exists, the influence of TP thermal enfact on the AI in Northeast Asia is similar to that south of 40°N in Asia (Figure 7a). When the TP topography is excluded (Figure 7b), the influence of the dynamic effect of the TP or the AI shows significant difference in the south and north of 40°N. The latitudinal difference porth of 40°N is missing in Figure 7b, while the meridional difference is obvious in Asia. The topography of the TP has an impact on North America, with wetting in the west and drying in central North America.

Figure 8 shows the circulation difference, between NTIP-nosh and historical simulations at 200, 500 and 850 hPa. The thermal effect of the TP leads to a positive geopotential height in Asia at 850 hPa; it is significant south of 40° is and extends northward. The negative geopotential height appears over the North Pacific and isora. Atlantic.

Figure 8. Circulation differences be ween NTIP-nosh and historical simulations at (a) 200 hPa, (b) 500 hPa and (c) 850 hPa over 1979-2014. Shading represents geopotential height field (units: m), and arrow represents wind field (units: m s⁻¹). Black arrow indicates the 90% confidence level.

The positive geopornual height extends upward to 500 hPa south of 30°N, centered over India and East of Taiwan Island. The rest of the NH has negative geopotential height, except for 75°E, 50°-60°N, where there is a positive geopotential height. The negative geopotential height covers almost over the entire NH, most significant over Asia, North Pacific and northwestern North America. South Asia, Southeast Asia and South China are controlled by a high-pressure system from 850 to 500 hPa. The negative geopotential height dominates at 200 hPa; the big absolute value region extends from the Baltic coast to Northeast Asia, the North Pacific and northern North America. Positive geopotential height has small absolute value and occurs only in the central Pacific, equatorial Indian Ocean and western equatorial Pacific. The decrease of sensible surface heating of the TP has a significant influence on the wind field of the NH. An upper-level cyclone is developed over East Asia, which is located in 20°-140°E over 200 hPa and in 80°-140°E over 500 hPa. A low-level anticyclone is developed in 45°-120°E. In the north (south) of the upper-level anticyclone, the easterly (westerly) wind increases because of the sensible surface heating of the TP. In addition, the westerly wind increases significantly at 200 hPa in North Africa and Asia from 15°N to 30°N and in North America from 30°N to 45°N. In the northwest (southeast) of the upper-level anticyclone, the northerly (southerly) wind increases because of the decrease of the sensible surface heating of the TP. The southerly wind increases in South Asia, Southeast Asia, and South China. In contrast, the northerly wind increases significantly in the Mongolian Plateau. The nal changes over the TP lead to more water vapor transported from the western equatorial Pace ic and equatorial Indian Ocean to central Asia in the lower atmosphere.

Figure 9 shows the circulation differences between N^TIP and historical simulations at 200, 500 and 850 hPa. Note that Figure 9 shows over, 'a s naller values than Figure 8. The dynamic effect of the TP also leads to positive georetential height in Asia at 850 hPa, but only south of 50°N; there is negative geopotential height nerth of 50°N. Figure 9b is similar to Figure 9c, with positive geopotential height dominated couch of 40°N, and negative geopotential height dominated north of 40°N. There are five negative centers north of 40°N, located in 50°E, 110°E, 160°E, 90°W, 10°W, respectively. The negative geopotential height dominates north of 20°N at 200 hPa.

Figure 9. Same as Figure 8, exc_{P} to: circulation differences between NTIP and historical simulations.

Figure 10 further illustrate the effect of the thermal changes of the TP on the vertical circulation in Asia. The ascending motion is weakened over $20^{\circ}-40^{\circ}$ N due to the removal of the sensible surface heating of the TP, resulting in drying over $20^{\circ}-40^{\circ}$ N. The ascending motion is strengthened over $40^{\circ}-55^{\circ}$ J due to the removal of the sensible surface heating of the TP, resulting in wetting over $40^{\circ}-55^{\circ}$ N. When the TP topography is excluded (Figure 10b), the influence of the dynamic effect of the TP on the vertical circulation in Asia exhibits the same characteristics as those in Figure 10a.

Figure 10. (a) Differences of zonal-nean omega between NTIP-nosh and historical simulations from 60° to 120° E over 1979. 2014. The shading area without hatching indicates the 90% confidence level. (b) Same as (c), but for differences between NTIP and historical simulations.

4 Conclusions and discussio.

In this study, we 'ou'd t at the MDV is significant in the variability of the AI over the NH. The MDV is closely related to the effects of the ICV in the oceans (AMO, PDO, AO, and ENSO) and over the TP. The TP plays an imperative role in MDV and contributes about 18.15% to the MDV. Meanwhile, the TP has a sustained effect on the AI via the dynamic and thermal effects, especially in Asia. The thermal effect of the TP leads to a drying effect over 20°-40°N in Asia except for the TIP region and Middle East, and a wetting effect in 40°-60°N of the NH except for Northeast Asia. The dynamic effect of the TP leads to meridional differences around 40°N of Asia. The atmospheric circulation field is also influenced by the dynamic and thermal changes associated with the TP. Therefore, the effect from the TP on the aridity change over 20°-60°N of the NH is a result of both large-scale oscillations and continuous drying/wetting effect.

In the past, the effects of ocean on the decadal to multi-decadal changes of the AI received much attention, with less consideration of the TP. Our results demonstrate the role of the TP on aridity change over the NH cannot be ignored. As the response of the AI to the TP is different over different regions, more work is needed on investigating detailed impact of the TP on regional AI changes and their mechanisms, especially in the boundary regions of the TP.

The interannual variability (IAV) component contributes nearly 50% to AI, and the TP has sustained impacts on aridity in interannual time scale. The IAV component changes at a very high frequency and has complicated characteristics, therefore, it is difficult to quantify the contribution of the TP to AI on interannual time scale by the stermist multiple linear regression (MLR) method. There is abundant room for further progress in quantifying the contribution of the TP to AI on interannual time scale.

The time series of annual-mean AI anomaly in the 1° H 1° com 20° to 60°N calculated by our AI data is consistent with that calculated in Feng and Eq. (2015) and Huang et al. (2020). The MDV of AI is in a positive phase from 2015 to 2021, so the AI may get wetter in the coming decades over the NH from 20° to 60°N. Sun and Liu (20 /1) investigated the dynamic and thermal effects of the TP on the precipitation in the Asian arid and mensoon regions, they found that the effect of the TP on the precipitation shows significant as ference in the south and north of 40°N. Consistent with Sun and Liu (2021), we found the effect of the TP on the AI also shows significant difference in the south and north of 40°N. Difference in the NH and Liu (2021), we focused on the dynamic and thermal effects of the TP on the AI also shows significant difference in the south and north of 40°N. Different from Sun and Liu (2021), we focused on the dynamic and thermal effects of the TP on the AI in the NH.

Acknowledgments

This research was funded by the National Science Foundation of China (42041004, 41991231). The authors are grateful to Song Feng (songfeng@uark.edu), Guolong Zhang (zhangguolong@lzu.edu.cn), Haipeng Yu (yuhp@lzb.ac.cn), and Yun Wei (weiy16@lzu.edu.cn) for supplying the potential evapotranspiration (PET) and aridity index (AI) data sets. Thanks to Jingchen Liu (liujch18@lzu.edu.cn) and Jieru Ma (majr18@lzu.edu.cn) for supplying the apparent heat source Q_1 data sets. The oscillation indices are available at http://climexp.knmi.nl/. The FGOALS-f3-L outputs, CRU data sets, and PREC/L data are available for download in https://esgfnode.llnl.gov/projects/cmip6/, https://crudata.uea.ac.uk/cru/data/hrg/, and

https://psl.noaa.gov/data/gridded/data.precl.html. The data presented in this research are available upon request from the corresponding author.

References

- Allen, D.G.; Pereira, L.O.; Raes, D.; Smith, M.; Allen, R.; Pereira, L.; Smith, M.A. Crop evapotranspiration: gigelines for computing crop water requirements. Rome, Italy: Food and Agriculture Organization of the United Nations (FAO). 1998.
- Chang, C.P.; Wang, Z.; Ju, J.; Li, T. On the relationship between western maritime continent monsoon rainfall and ENSO during northern winter. Jou val of Climate. 2004, 17(3), 665-672. https://doi.org/10.1175/1520-0442(2004)017<0.joj. CTRBWM>2.0.CO;2.
- Chen, B.; Xu, X.D.; Yang, S.; Bian, J.C. On the characteristic of water vapor transport from atmosphere boundary layer to stratosphere over Tibet. Plateau regions in summer. Chinese Journal of Geophysics. 2012, 55, 406-414. DOI: 11.60.8/j.issn.0001-5733.2012.02.005.
- Chen, M.Y.; Xie, P.P.; Janowiak, J.E.; Arkin, P.A. Giobai land precipitation: A 50-yr monthly analysis based on gauge observations. Journal of Hydrometeorology. 2002, 3, 249-266. http://dx.doi.org/10.1175/1525-7541(`.00'.)003% 3C0249:GLPAYM% 3E2.0.CO;2.
- Chen, Z.H.; Wen, Q.; Yang, H.J. Impact of Tibetan Plateau on North African precipitation. Climate Dynamics. 2021, 57, 2767. 2777. http://dx.doi.org/10.1007/s00382-021-05837-2.
- Enfield, D.B.; Mestas-Nunez, A.M., Trimble, P.J. The Atlantic multidecadal oscillation and its relation to rainfall and river hows in the continental US. Geophysical Research Letters. 2001, 28, 2077-2080. https://doi.org/10.1029/2000GL012745.
- Feng, S.; Fu, Q. Expansic n of global drylands under a warming climate. Atmospheric Chemistry and Physics. 2013, 1., 10081-10094. https://doi.org/10.5194/acp-13-10081-2013.
- Fu, Q.; Feng, S. Responses of terrestrial aridity to global warming. Journal of Geophysical Research-Atmospheres. 2014, 119. http://dx.doi.org/10.1002/2014JD021608.
- Guan, X.D.; Huang, J.P.; Guo, R.X. Changes in aridity in response to the global warming hiatus. Journal of Meteorological Research. 2017, 31, 117-125. https://doi.org/10.1007/s13351-017-6038-1.
- Guan, X.D.; Huang, J.P.; Guo, R.X.; Lin, P. The role of dynamically induced variability in the recent warming trend slowdown over the Northern Hemisphere. Scientific Reports. 2015, 5. http://dx.doi.org/10.1038/srep12669.

- Guan, X.D.; Huang, J.P.; Zhang, Y.T.; Xie, Y.K.; Liu, J.J. The relationship between anthropogenic dust and population over global semi-arid regions. Atmospheric Chemistry and Physics. 2016, 16, 5159-5169. http://dx.doi.org/10.5194/acp-16-5159-2016.
- Guan, X.D.; Ma, J.R.; Huang, J.P.; Huang, R.X.; Zhang, L.; Ma, Z.G. Impact of oceans on climate change in drylands. Science China-Earth Sciences. 2019, 62, 891-908. https://doi.org/10.1007/s11430-018-9317-8.
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset. International Journal of Climatology. 2014, 34, 623-642. http://dx.doi.org/10.1002/joc.3711.
- He, B.; Liu, Y.M.; Wu, G.X.; Bao, Q.; Zhou, T.J.; Wu, X.F.; Wang, L.; Li, J.D.; Wang, X.C.; Li, J.X.; et al. CAS FGOALS-f3-L model datasets for CMI '6 GMMIP Tier-1 and Tier-3 experiments. Advances in Atmospheric Sciences. 2020, 37, 18-28. http://dx.doi.org/10.1007/s00376-019-9085-y.
- He, Y.L.; Tian, W.L.; Huang, J.P.; Wang, G.; Ren. Y; Yan, H.; Yu, H.; Guan, X.; Hu, H. The mechanism of increasing summer wither vapor over the Tibetan Plateau. Journal of Geophysical Research: Atm. oheres. 2021, 126, e2020JD034166. http://dx.doi.org/10.1029/2020JD054166.
- Huang, J.P.; Xie, Y.K.; Guan, X.D.; Li D.D.; Ji, F. The dynamics of the warming hiatus over the Northern Hemisphere. Climate Dynamics. 2017, 48, 429-446. http://dx.doi.org/10.1007/200282-016-3085-8.
- Huang, J.P.; Yu, H.P.; Har, U.L.; Zhang, G.L.; Wei, Y.; Huang, J.P.; An, L.L.; Liu, X.Y.; Ren, Y. Declines in global coological security under climate change. Ecological Indicators. 2020, 117. https://doi.org/1J.1016/j.ecolind.2020.106651.
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.L.C.; Shih, H.H.; Zheng, Q.N.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences. 1998, 454, 903-995. http://dx.doi.org/10.1098/rspa.1998.0193.
- Jane, Q. China: The third pole. Nature. 2008, 454, 393-396. https://doi.org/10.1038/454393a.
- Ji, F.; Wu, Z.H.; Huang, J.P.; Chassignet, E.P. Evolution of land surface air temperature trend. Nature Climate Change. 2014, 4, 462-466. http://dx.doi.org/10.1038/nclimate2223.

- Li, Y.P.; Chen, Y.N.; Li, Z. Dry/wet pattern changes in global dryland areas over the past six decades. Global and Planetary Change. 2019, 178, 184-192. http://dx.doi.org/10.1016/j.gloplacha.2019.04.017.
- Lickley, M.; Solomon, S. Drivers, timing and some impacts of global aridity change. Environmental Research Letters. 2018, 13, 104010. http://dx.doi.org/10.1088/1748-9326/aae013.
- Liu, J.C.; Guan, X.D.; Gao, Z.K.; Huang, X.Q.; Ma, J.R.; He, Y.L.; Xie, T.J. Inter-decadal variability of the heat source over the Tibetan Plateau. Climate Dynamics. 2021, pp. 1-11. http://dx.doi.org/10.1007/s00382-021-05929-z.
- Liu, X.D.; Dong, B.W. Influence of the Tibetan Plateau up.ⁱft on the Asian monsoon-arid environment evolution. Chinese Science Bulletir. 2013, 58, 4277-4291. http://dx.doi.org/10.1007/s11434-013-5987-8.
- Liu, Y.M.; Lu, M.M.; Yang, H.J.; Duan, A.M. He, B.; Yang, S.; Wu, G.X. Land-atmosphere-ocean coupling associate (with the Tibetan Plateau and its climate impacts. National Science Review. 2020, 7, 534-552. http://dx.doi.org/10.1093/nsr/nwaa011.
- Liu, Y.Z.; Li, Y.H.; Huang, J.P.; Zhu, Q.Z.; Wang, S.S. Attribution of the Tibetan Plateau to northern drought. National Science Review. 2020, 7, 489-492. http://dx.doi.org/10.1093/nst/jwz.91.
- Luo, W.; Guan, X.D.; Xie, Y.K., Liu, J.C.; Zhou, Y.B.; Zhang, B.D. The key role of decadal modulated oscillation in recent cold phase. International Journal of Climatology. 2019, 39, 5761-5770. https://doi.org/10.1002/joc.6186.
- Ma, J.R.; Guan, X.D.; C. J, R.X.; Gan, Z.W.; Xie, Y.K. Mechanism of non-appearance of hiatus in Tibetan Plateau. Scientific reports. 2017, 7, 1-11. http://dx.doi.org/10.1038/s41598-017-04615-7.
- Ma, W.Q.; Ma, Y.M. Modeling the influence of land surface flux on the regional climate of the Tibetan Plateau. Theoretical and Applied Climatology. 2016, 125, 45-52. http://dx.doi.org/10.1007/s00704-015-1495-x.
- Ma, Y.M.; Kang, S.C.; Zhu, L.P.; Xu, B.Q.; Tian, L.D.; Yao, T.D. Tibetan observation and research platform: Atmosphere-land interaction over a heterogeneous landscape. Bulletin of

the American Meteorological Society. 2008, 89, 1487-1492. https://doi.org/10.1175%2F1520-0477-89.10.1469.

- Ma, Y.M.; Ma, W.Q.; Zhong, L.; Hu, Z.Y.; Li, M.S.; Zhu, Z.K.; Han, C.B.; Wang, B.B.; Liu, X. Monitoring and Modeling the Tibetan Plateau's climate system and its impact on East Asia. Scientific Reports. 2017, 7. http://dx.doi.org/10.1038/srep44574.
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society. 1997, 78, 1069-1079. http://dx.doi.org/10.1175/1520-0477(1997)078% 3C1069:APICOW% 3E2.0.CO;2.
- Middleton, N.; Thomas, D. World Atlas of Desertification, 31⁴ ec.; Edward Arnold, London, United Kingdom. 1997.
- Monteith, J. Evaporation and surface temperature. Quarter'v Journal of the Royal Meteorological Society. 1981, 107, 1-27. http://dx.doi.org/10.1002/uj +9710745102.
- Penman, H.L. Natural evaporation from open water bare soil and grass. Proceedings of the Royal Society of London. Series A Machematical and Physical Sciences. 1948, 193, 120-145.
- Prvlie, R. Drylands extent and environmental issues. A global approach. Earth-Science Reviews. 2016, 161, 259-278. http://dx.do..crg/10.1016/j.earscirev.2016.08.003.
- Qiao, B.J.; Nie, B.K.; Liang, C.M.; Ziang, L.W.; Zhu, L.P. Spatial Difference of Terrestrial Water Storage Change and Lake Water Storage Change in the Inner Tibetan Plateau. Remote Sensing. 2021, 12, 1984. http://dx.doi.org/10.3390/rs13101984.
- Scheff, J.; Frierson, L.M.W. Scaling Potential Evapotranspiration with Greenhouse Warming. Journal of Climate. 2J14, 27, 1539-1558. http://dx.doi.org/10.1175/JCLI-D-13-00233.1.
- Sun, H.; Liu, X.D. Impacts of dynamic and thermal forcing by the Tibetan Plateau on the precipitation distribution in the Asian arid and monsoon regions. Climate Dynamics. 2021, 56, 2339-2358. http://dx.doi.org/10.1007/s00382-020-05593-9.
- Thompson, D.W.J.; Wallace, J.M. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Research Letters. 1998, 25, 1297-1300. http://dx.doi.org/10.1029/98GL00950.

- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bulletin of the AmericanMeteorologicalsociety.1998,79,61-78.http://dx.doi.org/10.1175/1520-0477(1998)079% 3C0061:APGTWA% 3E2.0.CO;2.
- Trenberth, K.E. The definition of El Nino. Bulletin of the American Meteorological Society.1997,78,2771-2777.

http://dx.doi.org/10.1175/1520-0477(1997)078%3C2771:TDOENO%3E2.0.CO;2.

- Trenberth, K.E.; Shea, D.J. Atlantic hurricanes and natural variability in 2005. Geophysical Research Letters. 2006, 33. http://dx.doi.org/10.1029/2006GL026894.
- Wang, P.X.; He, J.H.; Zheng, Y.F.; Zhang, Q. Interdecadal relationship between summer Arctic Oscillation and aridity-wetness feature in northwest China. Journal of Desert Research. 2007, 27, 883-889. DOI: 1000-694X (2007) 05-0883-07
- Wang, S.S.; Huang, J.P.; He, Y.L.; Guan, Y.P. Combined effects of the Pacific decadal oscillation and El Nino-southern oscillation on glibal land dry-wet changes. Scientific reports. 2014, 4, 1-8. http://dx.doi.org/10.1033/jrcp06651.
- Wei, Y.; Yu, H.P.; Huang, J.P.; Zhou, T.J., Zhong, M.; Ren, Y. Drylands climate response to transient and stabilized 2 °C and 1.5 ^C global warming targets. Climate Dynamics. 2019, 53, 2375-2389. http://dx.doi.org/10.1007/s00382-019-04860-8.
- Wen, Q.; Zhu, C.Y.; Han, Z.X.; Liu, 7..).; Yang, H.J. Can the Topography of Tibetan Plateau Affect the Antarctic Bo. om Water? Geophysical Research Letters. 2021, 48, e2021GL092448. http://d. ac[;] org/10.1029/2021GL092448.
- Wu, Y.T.; Yang, S.; Hu, X M., Wei, W. Process-based attribution of long-term surface warming over the Tibetan Phateau. International Journal of Climatology. 2020, 40, 6410-6422. http://dx.doi.org/10 102/joc.6589.
- Wu, Z.H.; Huang, N.E. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in adaptive data analysis. 2009, 1, 1-41. http://dx.doi.org/10.1142/S1793536909000047.
- Xu, C.; Ma, Y.M.; Yang, K.; You, C. Tibetan Plateau impacts on global dust transport in the upper troposphere. Journal of Climate. 2018, 31, 4745-4756. http://dx.doi.org/10.1175/JCLI-D-17-0313.1.

- Xu, X.; Zhao, T.; Lu, C.; Guo, Y.; Chen, B.; Liu, R.; Li, Y.; Shi, X. An important mechanism sustaining the atmospheric" water tower" over the Tibetan Plateau. Atmospheric Chemistry and Physics. 2014, 14, 11287-11295. http://dx.doi.org/10.5194/acp-14-11287-2014.
- Xu, X.D.; Lu, C.G.; Shi, X.H.; Gao, S.T. World water tower: An atmospheric perspective. Geophysical Research Letters. 2008A, 35. http://dx.doi.org/10.1029/2008GL035867.
- Xu, X.D.; Zhang, R.H.; Koike, T.; Lu, C.G.; Shi, X.H.; Zhang, S.G.; Bian, L.G.; Cheng, X.H.;
 Li, P.Y.; Ding, G.A. A new integrated observational system over the Tibetan Plateau.
 Bulletin of the American Meteorological Society. 2008B, 89, 1492-1496.
 http://dx.doi.org/10.1175/2008BAMS2557.1.
- Yanai, M.H.; Esbensen, S.; Chu, J.H. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. Journal of Atmospheric Sciences. 1973, 30, 611–627. https://doi.org/10.1175/1520-0469(1973)?29% 3c0611:DOBPOT% 3e2.0.CO;2.
- Yanai, M.H.; Li, C.F.; Song, Z.S. Seasonal Heating of the Tibetan Plateau and Its Effects on the Evolution of the Asian Summer Monsoon. Journal of the Meteorological Society of Japan. 1992, 70, 319-351. https://doi.org/10.2151/j.rsj1965.70.1B_319.
- Yanai, M.H.; Tomita, T. Seasonal and interannual variability of atmospheric heat sources and moisture sinks as determined from NCEP–NCAR reanalysis. Journal of Climate. 1998, 11, 463–482. https://doi.org/10.1175/152.0-0442(1998)011,0463:SAIVOA.2.0.CO;2.
- Ye, D.Z.; Gao, Y.X. Meteorology of the Tibetan Plateau; Science press: Beijing, China, 1979.
- Ye, D.Z.; Wu, G.X. The role of the heat source of the Tibetan Plateau in the general circulation. Meteorology and Atmospheric Physics. 1998, 67, 181-198. http://dx.doi.org/10.1007/BF01277509.
- You, Q.L.; Chen, D.L.; Wu, F.Y.; Pepin, N.; Cai, Z.Y.; Ahrens, B.; Jiang, Z.H.; Wu, Z.W.; Kang, S.C.; AghaKouchak, A. Elevation dependent warming over the Tibetan Plateau: Patterns, mechanisms and perspectives. Earth-Science Reviews. 2020, 210, 103349. http://dx.doi.org/10.1016/j.earscirev.2020.103349.
- Zhang, L.X.; Zhou, T.J. Drought over East Asia: A Review. Journal of Climate. 2015, 28, 3375-3399. http://dx.doi.org/10.1175/JCLI-D-14-00259.1.
- Zhang, Y.C.; Kuang, X.Y.; Guo, W.D.; Zhou, T.J. Seasonal evolution of the upper-tropospheric westerly jet core over East Asia. Geophysical Research Letters. 2006, 33, 317-324. http://dx.doi.org/10.1029/2006GL026377.

Zhou, T.J.; Chen, X.L.; He, B.; Wu, B.; Zhang, L.X. Short commentary on CMIP6 Global Monsoons Model Intercomparison Project (GMMIP). Advances in Climate Change Research. 2019, 15, 493. DOI: 10.12006/j.issn.1673-1719.2019.132.

Reccio

Zhaokui Gao: Conceptualization, Methodology, Validation, Writing - Original Draft, Writing - Review & Editing, Software, Investigation. **Xiaodan Guan:** Conceptualization, Project administration, Formal analysis, Writing - Original Draft, Writing - Review & Editing. **Bian He:** Formal analysis, Data curation. **Long Zhao:** Software, Formal analysis. **Yongkun Xie:** Formal analysis, Writing - Review & Editing. **Yongli He:** Software. **Fei Ji:** Writing - Review & Editing.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Highlights

- Identified an important role of Tibetan Plateau in the variability of aridity over the Northern Hemisphere.
- Calculated the contribution of Tibetan Plateau to the multi-decadal variability of aridity.
- Qualified the dynamic and thermal effects of Tibetan Plateau on aridity change.

Solution of the second se