
1.  Introduction
It is widely recognized that the simulation of clouds remains an important source of uncertainty in climate mode-
ling, despite tremendous progresses having been made in the last few decades (Bony & Emanuel, 2001; Cheng & 
Xu, 2006, 2015; Golaz et al., 2002; Larson et al., 2012; Neggers, 2009; Qin et al., 2018; Tompkins, 2002). The 
challenge arises because clouds form at scales typically smaller than those of grid boxes in general circulation 
models (GCMs), and thus there is a need to represent cloud condensation on subgrid scales, which touches upon 
the fluctuations of temperature and moisture within a grid.

The essence of a statistical scheme is to derive cloudiness analytically by assuming subgrid-scale fluctuations 
follow a given probability distribution function (PDF). This has inspired the development of a series of schemes, 
with the complexity of the PDF forms varying considerably between each other. The simplest one is the empirical 
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scheme of Sundqvist (1978), which can be equivalently derived by assuming a uniform PDF for total water. The 
Cloud Layers Unified by Binormals scheme is perhaps the most complex among all, which assumes binormal 
PDFs jointly for vertical velocities and conserved scalars (Golaz et al., 2002). While complex PDFs are mathemat-
ically appealing, they become less attractive owing to increased computational cost and the difficulty in acquiring 
higher-order moments. Cheng and Xu (2015) proposed a simplified intermediately prognostic higher-order turbu-
lence closure that diagnoses rather than predicts high-order moments, thus significantly reducing the computa-
tional cost whilst not degrading the performance. On the other hand, schemes based on simple PDFs, such as 
uniform and triangular distributions, give fairly realistic simulations while not apparently increasing the model 
complexity. In most cases, it turns out that it is the statistical moments, rather than PDF forms themselves, that 
are more important to cloud simulation (Lin, 2014; Wang et al., 2015).

Because models still struggle to accurately represent subgrid-scale processes such as boundary layer turbulence 
and shallow/deep convection (Xie et al., 2018), the statistical moments derived from GCMs are commonly differ-
ent from those in observations (Quaas, 2012; Van Weverberg et al., 2016), leading to errors carried over into the 
cloud simulation. In recent years, high-resolution observations have been used to reveal the subgrid variability in 
nature. For instance, Lin (2014) compared the subgrid variability of relative humidity at tropical and midlatitude 
sites using an extensive high-resolution sounding array. Van Weverberg et al. (2016) explored the subgrid varia-
bility of temperature and moisture based on ground-based Raman lidar measurements. There are also numerous 
studies in the literature that investigated subgrid variability using cloud-resolving model or large-eddy model 
simulations (e.g., Wang et al., 2015; Xu & Krueger, 1991).

For schemes like Sundqvist's that assume a uniform PDF for total water, a more intuitive measure of subgrid 
variability is the so-called “critical relative humidity” (RHc), which is formulated as a function of PDF width and 
the saturation specific humidity. Physically, it represents a threshold of relative humidity that must be reached 
for clouds to start forming. Quaas (2012; hereafter referred to as Q12) diagnosed RHc from satellite measure-
ments and obtained a fitting formula based on the globally averaged profile. By applying the new RHc in the 
cloudiness formula, he found a 30% increase in cloud feedback compared to the standard version, yet some 
uncertainty remained due to the use of the “cloud forcing” technique that contains feedback from cloud masking 
of the clear-sky response rather than clouds alone (Soden et al., 2008; Zhang et al., 1994). In addition to the 
impact of RHc on cloud cover, there are also issues regarding how it influences the subgrid-scale condensation 
process, which has been rarely studied in the literature. Considering the influence of RHc on both cloud fraction 
and condensate is more relevant to current GCMs. Regarding the parameterization of RHc, a globally uniform 
profile used in previous studies fails to capture the real geographic distribution. Moreover, the vertical structure 
described as monotonically decreasing from the surface to the top of the atmosphere (TOA) is far from realistic. 
To this end, it is desirable to propose a new RHc formula that incorporates the geographic dependence and char-
acterizes the vertical structure with more accuracy. By constructing a RHc-based cloud macrophysics scheme in 
which fractional cloudiness and subgrid-scale condensation are synergistically solved, this study aims to answer 
the following questions: (a) To what extent do simulations using a more accurate RHc differ from those using 
a globally averaged one? (b) How different is a simulation that applies RHc in both cloudiness and condensate 
from one that applies it in cloudiness alone? And how sensitive is the estimated cloud feedback to such changes? 
Answering these questions will be helpful toward a better understanding of the sources of cloud feedback uncer-
tainty, and may also shed light on the pathways toward improvement of cloud modeling.

The remainder of this paper is organized as follows. Section 2 diagnoses and parameterizes RHc based on a 
combination of satellite measurements and reanalysis. Section 3 describes the model used, the design of the cloud 
scheme, and the experiments performed. Section 4 evaluates the performance of the new scheme and explores 
the sensitivity of cloud simulation to different RHc choices. Section 5 analyzes the cloud feedback under differ-
ent RHc configurations, as well as the contributions of specific cloud types to the cloud feedback. And finally, 
Section 6 gives our conclusions.

2.  Diagnosis and Parameterization of RHc

2.1.  Climatological RHc in Observations

Assuming subgrid-scale fluctuations of total water qt follow a uniform PDF, and neglecting temperature fluctua-
tions, one arrives at the following formula for the cloud fraction C:
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where RH represents the grid-box-mean relative humidity. RHc is the critical relative humidity, defined as

RHc = 1 −
∆𝑞𝑞

𝑞𝑞𝑠𝑠
� (2)

where qs stands for saturation specific humidity, and Δq is half the PDF width satisfying 𝐴𝐴 ∆𝑞𝑞 =

√

3𝜎𝜎 , in which σ 
denotes the standard deviation of qt. While cloud fraction expressed in Equation 1 is limited by many idealized 
assumptions and is not universally valid (Xu & Randall, 1996b), the concept behind it helps introduce the key 
intuitive parameter (i.e., RHc) that controls the subgrid-scale cloud condensation.

Equation  2 provides a direct way to calculate RHc from high-resolution observations, as conducted by 
Van Weverberg et al. (2016). Although the method is simple and straightforward, the derived RHc is susceptible 
to the inherent noise of the instrument.

An alternative approach is to inversely derive RHc from Equation 1, as used in Q12,

RHc = 1 −
1 − RH

(1 − 𝐶𝐶)
2� (3)

given the cloud fraction C is known. It is worth noting that an additional constraint between RH an C in Equa-
tion 3 must be satisfied to ensure that the derived RHc is in the range of 0∼100%. We apply Equation 3 to diagnose 
RHc, with the cloudiness observations from CloudSat/CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder 
Satellite Observations), which is the same as described in Miao et al. (2019). Specifically, to determine whether 
a pixel is cloudy or not, we use a combination of fields of CPR_Cloud_mask and Radar_Reflectivity fields 
from 2B-GEOPROF and CloudFraction from 2B-GEOPROF-LIDAR. Following Barker (2008), each volume is 
classified as a cloud if one of the two conditions are satisfied: (a) CPR_Cloud_mask ≥ 20 and Radar_ Reflectiv-
ity ≥ −30 dBz or (b) CloudFraction ≥ 99%. The main difference between cloudiness used in this study and that 
in Q12 is that the former utilizes both radar and lidar information, while the later uses the lidar information only. 
We then use a horizontal resolution of 2.5 × 2.5° and a vertical resolution of 25 hPa as the standard grid size to 
derive cloud fraction and grid-box RH, which comes from contemporary reanalysis in the ECMWF (European 
Center for Medium-Range Weather Forecasts)-AUX product. The relative humidity is calculated according to 
the algorithm in ECMWF: with respect to water for temperatures above 0°C, with respect to ice for temperatures 
below −23°C, and a quadratic interpolation of the two in transition range. The procedure is conducted below 
100 hPa, given that retrievals of relative humidity become less accurate for the low specific huminites in the 
upper troposphere (Fetzer et al., 2008; Read et al., 2007). The diagnostics apply to each day at each layer in the 
vertical dimension, with the climatological RHc obtained by averaging the values diagnosed on each day during 
the period 2007–2010. Given that RHc varies greatly with time and environmental conditions, an optimal RHc can 
be obtained using least squares error analysis by minimizing the cost function, as follows:

𝑓𝑓 =

√

√

√

√

√

1

𝑁𝑁

𝑁𝑁
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(
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√

1 − RH

1 − RH𝑐𝑐

− 𝐶𝐶obs

)2

� (4)

where N is the total number of samples at each location during the whole period.

Figure 1 shows the geographical distribution of the climatological RHc at selected levels (200, 500, 700, and 
900 hPa) using the averaging and optimal methods. Both results show lower RHc values in the subtropics and 
higher ones in the inner tropics, corresponding to larger and smaller subgrid-scale variability in these regions, 
respectively. In general, the patterns of the two sets of derived RHc are similar, but the values obtained using 
the optimal method are systematically larger than those using the average method. RHc tends to be lower over 
ocean than over land. Large values of RHc are found near the surface and in upper layers, with relatively small 
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ones in the middle layers. These findings are generally in good agreement with those of Q12 and Kahn and 
Teixeira (2009), despite the different observations used.

The vertically varying structure of RHc is more evident in the latitude–pressure cross section shown in Figure 2. 
In the vertical, RHc generally decreases from the surface to the mid-levels and then increases at high levels. On 
variation with latitude, RHc decreases from the polar regions to the mid-latitudes, and then slowly increases at the 
inner tropics. While RHc reaches its maximum at 300 hPa in the polar regions, it maximizes at the surface and 
exhibits a second peak at high levels in the other regions. A scatterplot of the two sets of derived RHc is shown in 
Figure 2c, where the points collapse reasonably well on a line with a slope of 1.24, indicating the RHc obtained 
using the optimal method is nearly 1.24 times of that using the averaging method. For the parameterization of RHc 
in the following, the results from the optimal method are used.

Figure 1.  Geographical distribution of CloudSat/CALIPSO diagnostic critical relative humidity (RHc) (%) at selected pressure levels using the temporal average (left) 
and least squares method (right).
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2.2.  Parameterization of RHc

Given the approximate symmetry of RHc in the two hemispheres, RHc was first symmetrized and then divided into 
four representative regions (Figure 3a), corresponding respectively to the inner tropics, subtropics, mid-latitudes, 
and polar regions. In each region, RHc has the general form:

RHc = 𝛽𝛽1 + 𝛽𝛽2 × exp

[

1 −

(

𝑃𝑃

𝑃𝑃𝑠𝑠

)𝛽𝛽3

]

+ 𝛽𝛽4 × exp

[

1 −

(

𝑃𝑃𝑠𝑠 − 𝑃𝑃

𝑃𝑃𝑠𝑠

)𝛽𝛽5

]

� (5)

where P stands for the pressure level, with the subscript s denoting the surface. βj (j  =  1, 2, …, 5) are 
latitude-dependent parameters to be determined. Note the third term on the right-hand side of Equation 5 is 

Figure 2.  Latitude–pressure cross-section of the zonal mean critical relative humidity (RHc) (%) derived using (a) the 
temporal average and (b) the least squares method. (c) Scatterplot of the temporal average (x-axis) versus least squares 
method (y-axis).
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introduced to allow RHc to have a non-monotonic structure in the vertical. The coefficients βj are determined by 
minimizing the cost function, as follows:

𝑔𝑔 =

√

√

√

√

1

𝑁𝑁

∑

(

𝛽𝛽1 + 𝛽𝛽2 × exp

[

1 −

(

𝑃𝑃

𝑃𝑃𝑠𝑠

)𝛽𝛽3

]

+ 𝛽𝛽4 × exp

[

1 −

(

𝑃𝑃𝑠𝑠 − 𝑃𝑃

𝑃𝑃𝑠𝑠

)𝛽𝛽5

]

− RH
obs

c

)

� (6)

Table 1 lists the values of βj in each latitudinal zone. Figure 3b shows the performance of the fitting. As can be 
seen, the fitting curves successfully capture the vertically varying structure as observed, with the bias mostly 
within the order of 2%. The relatively large bias near the TOA is most likely caused by a lack of sufficient 
samples at high levels. Figure 3b also superimposes the fitting of Q12, which underestimates RHc by about 30% 
above 600 hPa compared to the observed values. The separated RHc in each region is then combined into a single 
latitude-dependent formula in which the tangent function is used to make the parameterized RHc vary smoothly 
at the edges of neighboring regions. The expression reads as

RHc(𝜙𝜙) =
1 − 𝛼𝛼idx(𝜙𝜙)-1

2
RHc(idx(𝜙𝜙) − 1) +

1 + 𝛼𝛼idx(𝜙𝜙)-1

2
RHc(idx(𝜙𝜙))� (7)

where ϕ stands for latitude, and “idx” is the index of the region corresponding to latitude ϕ. 𝐴𝐴 𝐴𝐴idx(𝜙𝜙) are weighing 
coefficients satisfying 𝐴𝐴 𝐴𝐴idx(𝜙𝜙) = tanℎ

(

𝜙𝜙−𝜙𝜙𝑜𝑜

𝐷𝐷𝑜𝑜

)

 , where ϕ0 and D0 are tunable parameters, with their values shown in 

Figure 3.  (a) Observed critical relative humidity (RHc) (%) after symmetrization in the Northern Hemisphere and Southern Hemisphere. (b) Observed (dashed) and 
parameterized (solid) RHc profiles in four representative regions, with the differences marked by long-dashed lines. The parameterized RHc of Quaas (2012) is also 
superimposed in the figure (solid black) (c, d) Latitude–pressure cross-section of (c) the new parameterized RHc and (d) its deviation against the observation.

 19422466, 2022, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S003213 by Institution O
f A

tm
ospheric Physics, W

iley O
nline L

ibrary on [18/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Advances in Modeling Earth Systems

WANG ET AL.

10.1029/2022MS003213

7 of 21

Table 1. The performance of the full parameterization (NRHc, hereafter) is shown in Figure 3c, which captures 
well the vertical and latitudinal varying structure as in CloudSat/CALIPSO. The fitting deviations shown in 
Figure 3d indicate that the biases are mostly within 5%, and the fitting in the lower troposphere generally has a 
higher accuracy than the fitting in the upper troposphere.

3.  Model and Experiments
3.1.  Model Introduction

The model used to investigate the impact of the new parameterized RHc on cloud simulation is FAMIL 
(Finite-volume Atmospheric Model of the IAP/LASG), which is an atmospheric component of the Chinese 
Academy of Sciences' coupled model, FGOALS (Flexible Global Ocean–Atmosphere–Land System Model). 
FAMIL uses a finite volume dynamical core on a cubed-sphere grid system (Bao et al., 2019; He et al., 2019; Li 
et al., 2019; Lin, 2004; Zhou et al., 2015), with the flux-form semi-Lagrangian scheme used for tracer advection 
(Lin & Rood, 1996; Wang et al., 2013). FAMIL is run at a resolution of roughly 1.9° latitude × 2.5° longitude, 
with 32 levels in the vertical and a time step of 1,800 s.

The physical parameterizations are basically the same as described in Zhou et al. (2015). The convection scheme 
originates from Tiedtke (1989), and was later modified by including variants of entrainment parameterization 
and closure assumption (Wang & Zhang, 2013, 2014). The Rapid Radiative Transfer Model for GCMs (RRTMG) 
is used for radiation computation (Clough et al., 2005), with cloud radiation computed based on samples drawn 
from a stochastic cloud generator (Wang et al., 2021). The boundary layer turbulent process is parameterized by 
a “non-local” first-order closure scheme that determines eddy diffusivity based on similarity theory (Holtslag 
& Boville, 1993). Cloud microphysics is represented by the single-moment scheme of Lin et al. (1983), which 
predicts bulk contents of cloud water, rain, snow, ice crystals, and graupel/hail. Fractional cloudiness is calcu-
lated according to a semi-empirical scheme that uses both relative humidity and cloud condensate as predictors 
(Xu & Randall, 1996a; hereafter XR96). In FAMIL, cloud condensate is formed at grid-scale saturation, while 
cloud fraction is represented at subgrid scales, which inevitably causes inconsistencies in the simulation of cloud 
fraction and cloud condensate. One purpose of this study is to remedy this problem by constructing an RHc-based 
cloud scheme that calculates cloudiness and condensate synergistically.

3.2.  Calculation of Subgrid-Scale Condensation

The subgrid-scale variability measured by RHc not only influences cloud fraction, but also cloud condensate 
formed during subgrid-scale condensation. Regarding the calculation of the latter, two different approaches are 
adopted, as described below.

Representative region β1 β2 β3 β4 β5

I (|ϕ| ≤ 22.5°) 137.4 −32.7 9.6 36.2 −3.3

II (22.5° < ϕ ≤ 45°) 130.4 −32.1 11.5 40.0 −1.9

III (45° < |ϕ| ≤ 62.5°) −63.2 −133.2 −1.0 114.4 0.7

IV (|ϕ| > 62.5°) −79.1 −167.8 −1.1 −119.2 1.1

Latitude zone ϕ0 D0

|ϕ| ≤ 30° 10.0 6.5

30° < |ϕ| ≤ 60° 48.0 6.5

|ϕ| > 60° 69.0 6.5

Table 1 
Coefficients Used in Critical Relative Humidity (RHc) Fitting
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3.2.1.  Prognostic Method

This method retains the property of cloud condensate as a prognostic variable in models. Following Zhang 
et al. (2003), the prognostic equation for relative humidity 𝐴𝐴 𝐴𝐴 is expressed in terms of total water qt, liquid water 
temperature Tl, and liquid water ql:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝛼𝛼

𝜕𝜕𝜕𝜕𝑡𝑡

𝜕𝜕𝜕𝜕
− 𝛽𝛽

𝜕𝜕𝜕𝜕𝑙𝑙

𝜕𝜕𝜕𝜕
− 𝛾𝛾

𝜕𝜕𝜕𝜕𝑙𝑙

𝜕𝜕𝜕𝜕
� (8)

where 𝐴𝐴 𝐴𝐴 =
1

𝑞𝑞𝑠𝑠

 , 𝐴𝐴 𝐴𝐴 =
𝑞𝑞

𝑞𝑞
2

𝑠𝑠

𝜕𝜕𝜕𝜕𝑠𝑠

𝜕𝜕𝜕𝜕
 , and 𝐴𝐴 𝐴𝐴 = 𝛼𝛼 +

𝐿𝐿

𝐶𝐶𝑝𝑝

𝛽𝛽 , with symbols 𝐴𝐴 𝐴𝐴𝑠𝑠 , 𝐴𝐴 𝐴𝐴𝑝𝑝 , 𝐴𝐴 𝐴𝐴 standing for the saturation specific humidity, 

the heat capacity at constant pressure, and the latent heat of vapourization, respectively. The saturation is calcu-
lated with respect to ice at temperatures below −20°C, and approximated by a linear weighted average of the 
saturation over ice and water in the 0°C to −20°C temperature range. For the sake of simplicity, supersaturation 
for the ice process is not considered.

Noting 𝐴𝐴
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
  = 0 in the cloudy portion, together with the use of 𝐴𝐴

𝜕𝜕𝜕𝜕𝑙𝑙

𝜕𝜕𝜕𝜕
= 𝐶𝐶

𝜕𝜕 𝜕𝜕𝜕𝑙𝑙

𝜕𝜕𝜕𝜕
+ 𝑐𝑐𝑚𝑚 ̂𝑞𝑞𝑙𝑙

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 , Equation 8 is further expanded 

in the following form:
(

1 + 𝐶𝐶
𝐿𝐿

𝐶𝐶𝑝𝑝

𝜕𝜕𝜕𝜕𝑠𝑠

𝜕𝜕𝜕𝜕

)

𝜕𝜕 𝜕𝜕𝜕𝑙𝑙

𝜕𝜕𝜕𝜕
+ 𝑐𝑐𝑚𝑚 ̂𝑞𝑞𝑙𝑙

𝐿𝐿

𝐶𝐶𝑝𝑝

𝜕𝜕𝜕𝜕𝑠𝑠

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
=

𝜕𝜕 𝜕𝜕𝜕𝑡𝑡

𝜕𝜕𝜕𝜕
−

𝜕𝜕𝜕𝜕𝑠𝑠

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑙𝑙

𝜕𝜕𝜕𝜕
� (9)

where a hat is used to denote variables in the cloudy portion of a grid box, C stands for cloud fraction, and cm is 
the ratio of newly formed stratus to the pre-existing 𝐴𝐴 𝐴𝐴𝐴𝑙𝑙 , setting as 0.1. By substituting 𝐴𝐴

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
=

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 into Equation 8, 

one arrives at

𝛾𝛾𝛾𝛾
𝜕𝜕 𝜕𝜕𝜕𝑙𝑙

𝜕𝜕𝜕𝜕
+

[

(

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)−1

+ 𝛾𝛾𝛾𝛾𝑚𝑚 ̂𝑞𝑞𝑙𝑙

]

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝛼𝛼

𝜕𝜕𝜕𝜕𝑡𝑡

𝜕𝜕𝜕𝜕
− 𝛽𝛽

𝜕𝜕𝜕𝜕𝑙𝑙

𝜕𝜕𝜕𝜕
� (10)

where 𝐴𝐴
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
=

1

2

√

1

(1−𝑈𝑈 )(1−𝑈𝑈𝑐𝑐)
 , derived from Equation 1. Since qt and Tl are conserved during the process of conden-

sation, 𝐴𝐴
𝜕𝜕𝜕𝜕𝑡𝑡

𝜕𝜕𝜕𝜕
 and 𝐴𝐴

𝜕𝜕𝜕𝜕𝑙𝑙

𝜕𝜕𝜕𝜕
 can only be influenced by processes other than condensation, such as advection, convection, etc. 

Equations 9 and 10 thus form a closed set of equations to solve 𝐴𝐴
𝜕𝜕 𝜕𝜕𝜕𝑙𝑙

𝜕𝜕𝜕𝜕
 and 𝐴𝐴

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 . Recalling 𝐴𝐴

𝜕𝜕𝜕𝜕𝑙𝑙

𝜕𝜕𝜕𝜕
= 𝐶𝐶

𝜕𝜕 𝜕𝜕𝜕𝑙𝑙

𝜕𝜕𝜕𝜕
+ 𝑐𝑐𝑚𝑚 ̂𝑞𝑞𝑙𝑙

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 , the cloud 

condensate ql can then be easily calculated. A caveat to this method is that the consistency between the updated 
cloudiness and condensate is not necessarily satisfied, because of the combined use of diagnostic cloudiness and 
prognostic condensate. Following Park et al. (2014), an additional adjustment is made to alleviate such inconsist-
encies in cases of “empty” or “dense” clouds.

3.2.2.  Diagnostic Method Based on PDF

With a uniform PDF assumed for total water, one can also obtain a diagnostic formula for cloud condensate,

𝑞𝑞𝑙𝑙 = ∫
𝑞𝑞𝑡𝑡+∆𝑞𝑞

𝑞𝑞𝑠𝑠

(𝑞𝑞 − 𝑞𝑞𝑠𝑠)
1

2∆𝑞𝑞
dq� (11)

which is further expanded as

�� =
(�� + ∆�)2 − �2�

4∆�
− 1

2∆�
(�� + ∆� − ��).��� (12)

By expanding qs in a Taylor's series, 𝐴𝐴 𝐴𝐴𝑠𝑠 = 𝑞𝑞𝑠𝑠𝑠0 +
𝜕𝜕𝜕𝜕𝑠𝑠

𝜕𝜕𝜕𝜕

𝐿𝐿

𝐶𝐶𝑝𝑝

(𝑞𝑞𝑙𝑙 − 𝑞𝑞𝑙𝑙𝑙0) , with subscript “0” denoting the state before 
adjustment, 𝐴𝐴 𝐴𝐴𝑙𝑙 can be solved by using a Newton–Raphson iterative technique. Once ql is obtained, the updated 
RH is then used in Equation 1 for cloudiness diagnosis. Calculating cloudiness and cloud condensate in this way 
ensures the consistency between cloud fraction and condensate, as both are derived from the same PDF.
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3.3.  Numerical Experiments

3.3.1.  AMIP Experiment

The Atmospheric Model Intercomparison Project (AMIP)-type experiment forced by observed climatological 
sea surface temperature (SST) and sea ice is carried out to evaluate the performance of different cloud schemes 
in cloud simulation, including XR96 and the RHc-based schemes with different RHc formulae, that is, Q12 and 
NRHc. Additional experiments are also carried out to investigate the impact of different techniques in dealing 
with subgrid-scale condensation. The suffixes “_pdf” and “_prog” represent the computation of subgrid-scale 
condensation using the PDF diagnostic method and the prognostic method, respectively. Descriptions of the 
experiments and their related abbreviations are given in Table 2. The model is integrated for 15 years for each 
experiment, with the output of the last 10 years used for analysis.

3.3.2.  Aquaplanet Experiment

The analysis of cloud feedback is based on the aquaplanet experiment framework, in which the planet's surface 
is completely water-covered with fixed SST. Such settings suppress the interactions between the land surface, 
oceans and cryosphere, thus removing surface feedbacks in climate changes. Although the degree of model 
complexity is largely diminished in the aquaplanet framework, cloud feedbacks are found to be similar to those 
in their Earth-like configurations (Medeiros et al., 2008), the computational cost is dramatically decreased. To 
compare cloud feedbacks due to different RHc configurations, we perform two sets of six simulations each: a 
control experiment using zonally symmetric SST, and a warmer experiment by uniformly increasing the SST by 
4 K, analogous to a global warming scenario. Orbital parameters are set to perpetual equinox conditions with 
a fixed solar constant of 1,365 Wm −2. Other forcings, such as gas and aerosol concentrations, are also zonally 
symmetric. For all simulations, the model is integrated for 5 years following the Aquaplanet Experiment Project 
(APE) protocol (Neale & Hoskins, 2000), with the output of the last 3 years used for analysis. Table 2 summarizes 
the cloud schemes used in the AMIP and aquaplanet experiments.

4.  Comparisons of Cloud Simulation in AMIP Experiments
Figure 4 shows the global distribution of high-level (p ≤ 440 hPa), mid-level (440 < p ≤ 680 hPa), and low-level 
(p > 680 hPa) clouds simulated by different cloudiness schemes, along with CloudSat/CALIPSO satellite obser-
vations superimposed as a guiding reference. In experiments Q12 and NRHc, the subgrid-scale condensation is 
switched off to prevent significant changes in the hydrological cycle, such that the differences in cloudiness can 
be mainly attributed to differences in the cloudiness formula. Observations show high-level clouds are mainly 
located in the Intertropical Convergence Zone (ITCZ), reaching as high as 80%, which is associated with massive 
detrainment of ice cumuli from deep convection. Active convection in the tropics also leads to a moderate amount 
of mid-level clouds, which accounts for about one-third of the high-level clouds. Low-level clouds are located 
along the storm tracks, in the middle-to-high latitudes of the Southern Hemisphere, and over the offshore of the 
eastern Pacific Ocean where subsidence prevails. Compared to CloudSat/CALIPSO, the XR96 scheme dramati-
cally underestimates high- and mid-level clouds in the inner tropics, with the global mean value underestimated 
by up to 5.5% and 4.6%, respectively, which is partly due to a lack of parameterization for convective cloudiness 

Experiment Description AMIP APE

XR96 Cloud fraction calculated according to Xu and Randall (1996a) ✓ ✗

Q12 Cloud fraction calculated according to Equation 1, with RHc proposed by Quaas (2012) ✓ ✓

Q12_pdf Applying RHc in both cloud cover and condensate, with the latter calculated using the PDF 
diagnostic method

✓ ✓

Q12_prog As in Q12_pdf but with the cloud condensate calculated using a prognostic method ✓ ✓

NRHc As in Q12 but using a new RHc formula ✓ ✓

NRHc_pdf As in Q12_pdf but using a new RHc formula ✓ ✓

NRHc_prog As in Q12_prog but using a new RHc formula ✓ ✓

Table 2 
Experiment Descriptions
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in the model. On the other hand, it overestimates low-level clouds by 4.4%, with significant biases occurring 
in the polar regions, yet outperforms the RHc-based schemes in terms of the global mean. When replaced with 
the RHc-based schemes, the underestimations of high- and mid-level clouds are remarkably alleviated, which 
reproduce large occurrences of high cloud in the vicinity of the ITCZ. The bias sign changes from negative to 
positive in Q12, which conversely overestimates high- and mid-level clouds by about 13.8% and 7%, respectively. 
The overestimation of low-level clouds in the polar regions is reduced, but at the same time there are overestima-
tions in the remaining regions, leading to an even worsened globally averaged result. The application of NRHc 
yields a better simulation than that of Q12, with the global mean bias within the order of 0.4%, 1.2%, and 4.9% 
for high-, mid- and low-level clouds, respectively, as opposed to 13.8%, 7%, and 6.9% in Q12 simulations. This 
demonstrates that while cloud fraction can be easily influenced by RH, the accuracy of RHc is also important in 
cloud simulation.

The biases in the vertically projected cloud cover can be traced back to biases in layer cloudiness. Figure 5 
gives the zonally averaged vertical structure of cloud fraction for CloudSat/CALIPSO and the three simulations. 
Vertically continuous clouds in the deep tropics and shallow cumulus in the subtropics are evident in Cloud-
Sat/CALIPSO, yet only marginally observed in XR96. These underestimations are mitigated in the RHc-based 
scheme, which reproduces well the vertical cloud structure extending from the surface to 200 hPa in the tropics. 
Using a larger RHc as in NRHc produces fewer clouds than using a smaller RHc as in Q12—and this is further 
evidenced in Figure 6, which shows the difference in cloud amount depending on the choice of RHc. This by itself 

Figure 4.  Geographical distribution of high (left column), mid (middle column) and low (right column) cloud cover (%) from (a–c) CloudSat/CALIPSO and 
simulations using the cloud scheme of (d–f) XR96 (g–i) Q12, and (j–l) NRHc. The global mean value is shown in the top right of each figure.

 19422466, 2022, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S003213 by Institution O
f A

tm
ospheric Physics, W

iley O
nline L

ibrary on [18/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Advances in Modeling Earth Systems

WANG ET AL.

10.1029/2022MS003213

11 of 21

is trivial, since given the same relative humidity, increasing the RHc increases the threshold for clouds to start 
forming, thus resulting in a lower occurrence of clouds. Similar phenomena are also observed in the simulations 
applying RHc to both cloud cover and condensate (Figures 6b and 6c), although not as rigorously as in simulations 
applying RHc to cloud cover alone. Different techniques for calculating subgrid-scale condensation lead to differ-
ences mainly in the upper layers. Moreover, the difference is more remarkable when comparing the simulations 
applying RHc to cloud cover alone and those applying RHc to both cloud cover and condensate. These differences 
may then translate into diversity and uncertainty in the cloud feedback, which is analyzed below.

5.  Implications of RHc for Cloud Feedback
5.1.  Cloud Response to +4K SST

As RHc is an important parameter in the cloud scheme, it is expected to influence the response of clouds to exter-
nal forcings and thus the estimate of cloud feedback, which remains the greatest source of uncertainty in climate 
projections (Schneider et al., 2017; Zelinka et al., 2020). But to what extent can the range of cloud feedback 
uncertainty revealed in different models be attributed to the choice of RHc and its implementation in a single 
model? A starting point for exploring this question is comparing the cloud response to +4K SST among different 
experiments, since most of the variation in cloud feedback arises from different cloud responses. Figure 7 shows 
the changes in zonally averaged cloud fraction and cloud liquid and ice water profiles for simulations applying 
different RHc configurations listed in Table 2. An upward shift in clouds is observed in all simulations, extend-
ing across most of the troposphere at high altitudes and decreasing remarkably in layers below. Clouds respond  
in such a way so as to offset the effect of surface warming, following the fixed anvil temperature hypothesis  

Figure 5.  Latitude–pressure cross-section of the zonal mean cloud fraction (%) from (a) CloudSat/CALIPSO and simulations using the cloud scheme of (b) XR96, (c) 
Q12, and (d) NRHc.
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(Hartmann & Larson,  2002). This is accompanied by elevated cloud ice 
(right column), which is caused by enhanced deep convection in the tropics 
that detrains cloud ice crystals at high altitudes. While all simulations are 
common in producing such features, the models show obvious discrepancies 
in the magnitude of the response. For simulations applying the prognostic 
approach in calculating subgrid-scale condensation (Figure 7i and 7r), the 
changes in cloud ice are more pronounced than those in the remaining simula-
tions, regardless of the choice in RHc. Another striking feature is the different 
response of cloud liquid water. While most simulations produce an increase 
in cloud liquid water in the polar regions (poleward of 60°) and a decrease in 
the subtropics, Q12_prog produces a consistent increase across all latitudes 
(Figure 7h). The sensitivity of cloud condensate to RHc is larger in simula-
tions applying RHc in both cloud cover and condensate than those applying 
RHc in cloud cover alone, suggesting the role of RHc in regulating climate 
is limited in the latter. There are also noticeable differences due to different 
approaches dealing with subgrid-scale condensation, which are comparable 
or even larger than those caused by the choice in RHc. This implies that the 
diversity of cloud feedback may arise from different techniques in the imple-
mentation of RHc, in addition to the variation in RHc itself.

Figure 8 shows histograms of changes in global-mean cloud fraction viewed 
by the International Satellite Cloud Climatology Project (ISCCP) simulator, 
which partitions clouds into cloud top pressure (CTP) and optical depth (τ) 
bins. Viewing clouds in this manner facilitates the computation of cloud 
feedback using the cloud radiative kernel technique (Zelinka et  al., 2012). 
All simulations consistently show a reduction in global-averaged cloudiness, 
ranging from 1.3% to 6.1%. A robust decrease occurs in low-topped clouds, 
accompanied by a modest increase in high-topped clouds. This is in accord-
ance with increased cloudiness at high altitudes and decreased cloudiness at 
low latitudes (Figure 7). When stratified in the τ range, clouds tend to shift 
from optically medium bins to thick ones, which is more evident in simula-
tions applying RHc in both cloud cover and condensate. By comparing the 
two rows, we can see that the sensitivity to RHc is smaller in simulations 
applying RHc in cloud cover alone than those applying it in both cloud cover 
and condensate, in agreement with the findings of Figure 7. Results are also 
sensitive to the manner how subgrid-scale condensation is calculated, with 

the PDF diagnostic approach producing more pronounced changes in some of the cloud regimes than the prog-
nostic approach.

We further partition clouds into different categories. In the left column of Figure 9, we show changes in the 
occurrence of thick (τ > 23), medium (3.6 < τ ≤ 23) and thin (τ ≤ 3.6) clouds in simulations applying NRHc 
in the cloud scheme, along with the differences against simulations applying Q12 in the right column. All three 
simulations show an increase in thick clouds and a decrease in thin clouds poleward of 60°, with the magnitude 
varying considerably between each other. Note that for display purpose, the green curves in the left column use 
the right ordinate. Altering RHc in each experiment leads to differences mainly in the polar regions, and to a lesser 
degree in the tropics and subtropics. However, even small differences in cloud changes at low latitudes can lead to 
large differences in shortwave (SW) cloud feedback, because the SW kernel reaches its maximum at the equator.

Figure 10 shows the changes in cloud fraction stratified according to cloud top height. The changes are overall 
positive for high-topped (p ≤ 440 hPa) clouds and negative for low-topped (p > 680 hPa) clouds in all three 
simulations applying NRHc in the cloud scheme. The mid-topped (440 < p ≤ 680 hPa) clouds generally increase 
poleward of 60° and decrease between 30° and 60°. These behaviors can be coarsely inferred from the layer 
cloudiness shown in Figure  7, although the definition of cloud top height differs between the simulator and 
models (Bodas-Salcedo et al., 2011; Wang, 2022a). In contrast to the apparent differences found by partitioning 
clouds according to τ, the curves are close to each other in most regions except for low-topped clouds in the 

Figure 6.  Differences in cloud fraction (%) between the critical relative 
humidity (RHc) choice of NRHc and Q12 in simulations (a) applying RHc 
only in cloud cover, and (b, c) applying RHc in both cloud cover and cloud 
condensate, with the subgrid-scale condensation calculated using the PDF (b) 
diagnostic and (c) prognostic method.
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extratropics. The reason is that subgrid-scale condensation mainly affects the concentration of cloud condensate 
but barely influences the cloud vertical structure, which is more relevant to the determination of cloud top height. 
This would imply a smaller diversity in longwave (LW) cloud feedback than for SW cloud feedback, since the 
former is mainly influenced by high-topped clouds while the latter is more affected by optically thick clouds. 
Regarding the sensitivity to RHc, the difference is more remarkable in simulations calculating subgrid-scale 
condensation using the prognostic approach (red curve). Given the overall consistency between each curve in 
the left panel, the apparently large differences in the right panel reflect large differences arising from a smaller 
choice of RHc. This can be caused by a combination of the following two reasons: (a) As Q12 is systematically 
smaller than NRHc, the completely clear skies in NRHc simulations now become partially cloudy skies; (b) The 
more frequent interaction between cloud macrophysics and other parts in the model increases the diversity of 
model behavior.

Figure 7.  Changes in cloud fraction (%, left column), cloud liquid water (mg kg −1, middle column), and cloud ice water (mg kg −1, right column) between the +4 K and 
control experiments in simulations with different critical relative humidity (RHc) configurations.
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Figure 8.  Globally averaged changes in cloud fraction in CTP-τ histograms between the +4 K and control experiments in simulations with different critical relative 
humidity (RHc) configurations. The sum of each matrix is shown in the top right of each panel.

Figure 9.  Changes in the occurrence of thick (τ > 23), medium (3.6 < τ ≤ 23), and thin (τ ≤ 3.6) clouds in simulations with NRHc applied in the cloud scheme (left 
column), and the differences against simulations with Q12 applied (right column). In the left column, green curves in the left column use the right ordinate. Units: %.
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5.2.  Cloud Feedback Analysis

Figure 11 presents the zonally averaged SW, LW, and net cloud feedback calculated using cloud radiative kernels. 
Details for the kernel technique and comparisons with other approaches are given in Appendix A. The LW cloud 
feedback is positive at all latitudes except at the equator, with the pattens closely resembling those of high-cloud 
changes (Figure 10a). This is because the LW kernel increases strongly with decreasing CTP, and thus the LW 
cloud feedback is mostly determined by changes in high-topped clouds. On the other hand, SW cloud feedback 
is relevant to cloud changes at all altitudes, and the impact is more sensitive to cloud optical depth, as well as the 
condition of solar zenith. Because SW kernel maximizes at the equator, large discrepancies in cloud feedback 
are observed in these regions despite small cloudiness changes. The agreement between each curve on the cloud 
feedback of LW is better than that of SW. Because SW cloud feedback dominates over LW cloud feedback at 
most latitudes, the patterns of net cloud feedback resemble those of SW cloud feedback. Altering RHc leads to 
differences mainly at low latitudes, exceeding 2 Wm −2K −1 for both SW and LW cloud feedback. The differences 
between each curve are larger than those in the left panel, implying the use of smaller RHc tends to broaden the 
diversity of cloud feedback.

To explore cloud feedback contributed by different cloud types, Figure 12 shows the global-mean cloud feedback 
partitioned by high, middle, low, thin, medium, and thick clouds. Considerable spread is evident in the SW cloud 
feedback, especially for low- and high-topped clouds, spanning a wide range of about 2 Wm −2K −1. The diversity 
of LW cloud feedback is relatively smaller than that of SW, with the largest spread occurring in high-topped 
clouds reaching 1 Wm −2K −1. Using smaller RHc leads to larger spread than using larger ones, in line with the 
assertion previously made. For each cloud type, the anticorrelation between LW and SW cloud feedback results 
in reduced diversity of the net cloud feedback. The largest spread occurs in low clouds because of the exceptional 

Figure 10.  Changes in the occurrence of high-topped (p ≤ 440 hPa), mid-topped (440 < p ≤ 680 hPa), and low-topped (p > 680 hPa) clouds in simulations with NRHc 
applied in the cloud scheme (left column), and the differences against simulations with Q12 applied (right column). Units: %.
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value in Q12_prog, and to a lesser degree in optically thick clouds. While many previous studies (e.g., Bony & 
Dufresne, 2005; Cesana et al., 2017; Zelinka et al., 2012) have emphasized the diversity of cloud feedback due 
to low clouds, varying RHc and its implementation leads to the diversity of cloud feedback mainly arising from 
optically thick clouds.

Figure 13 shows the global-mean cloud feedbacks for different simulations estimated by three different methods—
the cloud radiative kernel technique (Zelinka et al., 2012), adjusting ΔCRE by considering cloud masking effects 
(Shell et al., 2008; Soden et al., 2008), and directly using ΔCRE to diagnose cloud feedback (Cess & Potter, 1988). 
Also shown are multimodel cloud feedbacks estimated by ΔCRE from the CMIP6 APE experiments. The ΔCRE 
method systematically leads to larger cloud feedbacks for SW and smaller ones for LW in comparison with the 
other two. Although the ΔCRE method is not a rigorous estimate of realistic cloud–climate feedbacks, it provides 
an indication of diversity in models. It is found that the range of net cloud feedback uncertainty in different 
models is nearly replicated by varying RHc and the techniques in calculating subgrid-scale condensation in a 
single model. Even after excluding Q12_prog, the spread reaches 40% of that found in multiple models. This 
highlights the importance of RHc and its implementation in models in inducing cloud feedback diversity. It is also 
apparent that the spread caused by different treatment of subgrid-scale condensation is larger than that caused by 
the choice of RHc.

6.  Summary and Conclusions
This study investigates the RHc diagnosed from CloudSat/CALIPSO, which is approximately a measure of 
subgrid-scale variability of moisture. The observed RHc exhibits distinct geographical distributions, with rela-
tively low values in the subtropics and high values in the polar regions. Also found is a non-monotonic verti-
cal structure that decreases from the surface to the mid-levels and then increases in upper layers. A globally 
uniform, vertically monotonically varying profile of RHc as parameterized in many studies (e.g., Sundqvist 

Figure 11.  Zonally averaged SW, LW and net cloud feedback calculated using cloud radiative kernels in simulations with NRHc applied in the cloud scheme (left 
column), and the differences against simulations with Q12 applied (right column). Units: Wm −2K −1.
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et al., 1989; Q12) thus fails to capture the observed RHc with sufficient accuracy. An improved formula for RHc 
is addressed by incorporating latitudinal dependence and the bimodal structure in the vertical, which success-
fully captures the vertical and latitudinal variations as in CloudSat/CALIPSO, with the bias mostly within 5%. 
Although the RHc formula is climatologically based, different from the time-varying characteristics pursued by 
process-oriented parameterizations, it serves as a guiding reference for the time-averaged subgrid-scale variabil-
ity in parameterizations.

With the parameterized RHc, a cloud macrophysics scheme is constructed in which fractional cloudiness and 
subgrid-scale condensation are synergistically solved, in contrast to the default XR96 scheme used in FAMIL that 
calculates cloud fraction only. The AMIP-type experiment is then conducted to evaluate the performance of differ-
ent schemes on cloud simulation, including XR96, Q12, and NRHc. Results show that the RHc-based schemes 
largely alleviate the underestimation of high- and mid-level clouds in the default model, while better simulation 

Figure 12.  Global- and annual-mean (a) SW cloud feedback, (b) longwave (LW) cloud feedback, and (c) net cloud feedback, 
partitioned by high, middle, low, thin, medium, and thick clouds in simulations with different critical relative humidity (RHc) 
configurations. Units: Wm −2K −1.
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of low-level clouds are produced by XR96. The application of NRHc yields 
better simulations than Q12, with the global-mean bias within the order of 
0.4%, 1.2%, and 4.9% for high-, mid- and low-level clouds, respectively, as 
opposed to 13.8%, 7%, and 6.9% in Q12 simulations. This demonstrates the 
importance of the accuracy of RHc in cloud simulation. The larger occur-
rence of clouds in Q12 is in accordance with its smaller magnitude, which 
decreases the threshold for clouds to start forming. Similar phenomena are 
also observed in simulations applying RHc to both cloud cover and conden-
sate, yet the pattens are different among the simulations. These differences 
may then easily transfer into the diversity and uncertainty of cloud feedback.

Control and +4K SST aquaplanet experiments are carried out to investigate 
the sensitivity of cloud feedback to RHc and its implementation. While all 
simulations commonly produce an upward shift feature of clouds in response 
to +4K warming, the modeled clouds show obvious discrepancies in the 
magnitude of the response. The sensitivity of cloud changes to RHc is larger 
in simulations applying RHc in both cloud cover and condensate than those 

applying it in cloud cover alone, because in the former the hydrological feedback between cloud macrophysics 
and other parts in the model increases the diversity of model behavior. For the same reason, using a smaller RHc 
tends to produce greater sensitivity than using a larger one.

While many previous studies have emphasized the diversity in cloud feedback due to low clouds, varying RHc 
and its implementation leads to the diversity of cloud feedback being mainly due to optically thick clouds. Using 
smaller RHc values leads to larger spread than using larger ones. Furthermore, the spread caused by different 
treatments of subgrid-scale condensation is larger than that caused by the choice of RHc. A large portion of cloud 
feedback diversity in different CMIP6 models is replicated by varying RHc and its implementation in a single 
model, highlighting the importance of RHc in inducing cloud feedback diversity.

Appendix A:  Methodology for Cloud Feedback Estimation
Following Zelinka et  al.  (2012), multiplying the change in cloud fraction for each ISCCP cloud type by the 
corresponding cloud radiative kernel yields an estimate of the contribution of each cloud type to the change in 
radiation at the TOA:

∆�cloud
(

lon, lat, �top, �
)

= ��
��

(

�top, �
) × ∆�

(

lon, lat, �top, �
)

� (A1)

where ΔRcloud(lon, lat, Ptop, τ) is the contribution to the TOA flux anomaly from the cloud fraction anomaly at a 
particular location and for clouds with a particular Ptop and τ [ΔC(lon, lat, Ptop, τ)]. The term 𝐴𝐴

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕(𝑃𝑃top ,𝜏𝜏)
 represents 

the cloud radiative kernel, which is calculated using RRTMG with atmospheric and surface conditions derived 
from the control aquaplanet climate. Cloud feedback is then obtained by summarizing the contribution of all 
cloud types normalized by the change in global-mean surface temperature (i.e., 4 K). This method overcomes the 
invalidity of using radiative kernels to estimate cloud feedback owning to strong nonlinearities of TOA flux to 
cloud amount perturbations. Besides, it allows one to attribute the contributions of specific cloud types to cloud 
feedback, thus casting useful physical light on its causes.

Another approach to estimate ΔRcloud is by subtracting the cloud masking effects of changing temperature, water 
vapor, surface albedo and radiative forcing from the change in the cloud radiative effect (CRE) (Shell et al., 2008; 
Soden et al., 2008):

∆𝑅𝑅cloud = ΔCRE +
(

𝐾𝐾
0

𝑇𝑇
−𝐾𝐾𝑇𝑇

)

dT +
(

𝐾𝐾
0

𝑞𝑞 −𝐾𝐾𝑞𝑞

)

dq� (A2)

where 𝐴𝐴 𝐴𝐴𝑇𝑇  and 𝐴𝐴 𝐴𝐴𝑞𝑞 are radiative kernels for temperature and water vapor calculated using RRTMG, with super-
script “0” denoting the clear sky. In Equation A2, the cloud masking effects due to the forcing change and albedo 
feedback have been dropped as their responses to global warming are suppressed in the aquaplanet framework.

Figure 13.  Global- and annual-mean cloud feedbacks estimated by three 
different methods in simulations with different critical relative humidity (RHc) 
configurations. The multimodel cloud feedbacks estimated by ΔCRE from the 
CMIP6 APE experiments are also overlaid, with each model represented by a 
plus sign.
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Figure A1 shows a scatterplot of cloud feedbacks calculated using cloud radiative kernels versus those calculated 
by adjusting ΔCRE. Each point represents the feedback computed for a single month at a single location in the 
model. For both SW and LW cloud feedbacks, the points collapse reasonably well on a line, with the correlation 
coefficients exceeding 0.8 for SW and 0.9 for LW. The regression slopes lie mostly within 10% of the one-to-one 
line for LW (except for Q12_pdf and Q12_prog) and within 20% for SW (except for Q12_pdf, Q12_prog and 
NRHc_pdf). The poor agreement for SW might presumably be caused by the overly coarse resolution of τ in SW 
cloud radiative kernels, which is more sensitive to changes in τ.

Data Availability Statement
The CloudSat/CALIPSO data products are accessible through the CloudSat Data Processing Center website at 
https://www.cloudsat.cira.colostate.edu/. The ECMWF-AUX product is available at https://www.cloudsat.cira.
colostate.edu/data-products/ecmwf-aux. The source code of the FAMIL model can be downloaded from http://
doi.org/10.5281/zenodo.4588109 (Li,  2021). The aquaplanet radiative kernels are available for download at 
https://doi.org/10.5281/zenodo.6381831 (Wang, 2022b).

Figure A1.  Scatterplot of (a–f) SW–cloud feedback and (g–l) LW–cloud feedback estimated between using the method of adjusting ΔCRE by considering cloud 
masking effects and the cloud radiative kernel method. The thin line is the one-to-one line, and the thick line is the linear least squares fit to the data. The slope and 2σ 
range of uncertainty of this regression line along with the fraction of variance explained by the fit are provided in each panel. Units: Wm −2K −1.
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