
1. Introduction
In the most significant monsoon region on Earth, the precipitation variabilities associated with the Asian summer 
monsoon (ASM) affect the daily lives of nearly 60% of the global population. The simulations and predictions 
of Asian monsoon precipitation attract much interest but encounter tremendous challenges. For example, the 
interannual variabilities observed in the Asian monsoon precipitation over land have been poorly represented 
in a series of projects since the late 20th century, such as the Atmospheric Model Intercomparison Project 
(Gates, 1992; Gates et al., 1999) and the Climate Variability and Predictability (CLIVAR) International Climate 
of the 20th Century Project (C20C) (Folland et al., 2002, 2014; Kinter & Folland, 2011; Li et al., 2007). In the 
above projects, atmospheric models were forced by observed sea surface temperature (SST) and sea ice concen-
tration data. Air-sea interactions were not considered, though these factors are important for simulating land-sea 
thermal contrasts in Asian monsoon regions in these kinds of experiments.

Although some studies have proposed that resolving air-sea interactions could improve the simulation of the 
Asian monsoon region (Bollasina & Nigam, 2009; Fu et al., 2002; Wang, 2006), state-of-the-art coupled models 
still show quite large biases when simulating ASM. Sperber et  al.  (2013) found that the CMIP5 multimodel 
mean (MMM) is more accurate than the CMIP3 MMM across all diagnostics in terms of its ability to simulate 
pattern correlations with respect to observations. However, there are still biases in the CMIP5 model simulations, 
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including rainfall underestimations in the Yangtze River basin and weak western Pacific subtropical high pres-
sures (Feng et al., 2014; Song & Zhou, 2014). Recently, Xin et al. (2020) indicated that CMIP6 models exhibit 
improved skill scores with regard to the climatological pattern of the East Asian summer monsoon (EASM) 
relative to the previous CMIP5 models; these improvements are related to the relatively small SST biases of the 
CMIP6 models over the Northwestern Pacific Ocean. However, the CMIP6 models do have biases in that they 
report insufficient rainfall in the Yangtze River basin and northwestern Xinjiang Province and excessive rainfall 
in Northern China, Northwest China and on the Tibetan Plateau (TP).

The uncertainties of physical parameterizations are one of the main sources of model biases. To reduce this kind 
of model bias and to improve the performance of HadGEM3-GC3.05, the Met Office Hadley Centre recently 
proposed perturbed parameter ensemble (PPE) simulations (Sexton et al., 2021). By testing nearly 3,000 samples 
of parameter space in atmosphere-only simulations, 25 variants with combinations of 47 parameters were finally 
selected to run the global coupled simulations for the 1900–2100 period. Additional five parameters were neces-
sary to be perturbed for maintaining consistency with 5 of the 47 independent parameters, and all 52 of which 
are listed in Table 1 of Sexton et al. (2021). The preliminary evaluations show that a 20-member PPE (PPE-20) 
appears to have a good performance when simulating many aspects compared to the CMIP5 models. Moreover, 
the ensemble shows a large spread of climate variabilities in simulating many aspects of the global climate, 
such as the El Niño-Southern Oscillation (ENSO) and Atlantic Multi-decadal Oscillation (AMO) (Yamazaki 
et al., 2021). In general, the selected PPE-20 shows reasonable performance in climate simulations such as clima-
tological averages and internal variability, etc. (Yamazaki et al., 2021). Meanwhile, it provides a useful data set 
for understanding the different combinations of physical parameters related to physical processes such as convec-
tion, aerosol-cloud-radiation interactions, boundary layer heat and moisture transport.

In this paper, we investigate the simulation skill of PPE-20 in reproducing the mean ASM climate pattern from 
1979 to 2014. The simulation skill is quantitatively estimated by objective algorithms. Furthermore, the sensitiv-
ities of the ASM simulation skill to 52 physical parameters are analyzed. The possible cause and related param-
eters together with the associated physical processes are further discussed. Additionally, the importance of the 
parameters in the 518 Atmospheric Model Intercomparison Project (AMIP) samples are shown in the Supporting 
Information S1 for reference. This study aims to address two main questions: (a) How well does PPE-20 simu-
late the mean ASM climate precipitation pattern? (b) What are the key parameters and the associated physical 
processes that relate to the model biases? These analyses will provide a reference for improving model simula-
tions of ASM and will also advance our understanding of ASM dynamics. The following study is divided into 
three sections. Section 2 introduces the data sets and methods. Section 3 presents the results of the evaluation. 
Section 4 presents the conclusions and discussion.

2. Data Sets and Methods
2.1. Observation Data Sets

The Global Precipitation Climatology Project (GPCP) Version 2 (V2) data set, a monthly global precipitation 
data set containing data recorded from January 1979 to December 2014, is used for this study (Adler et al., 2003; 
Huffman et al., 2009). It is a 2.5° × 2.5° gridded data set that combines satellite estimates and rain gauge data.

The ERA5 wind reanalysis data produced by the European Center for Medium-Range Weather Forecasting 
(ECMWF) from January 1979 to December 2014 are also used in this study (Hersbach et al., 2020).

2.2. PPE Data Sets

In this study, the 20-member PPE of the UK Hadley Centre Unified Model HadGEM3-GC3.05 model was used 
for global coupled simulations, which is conducted for the 1900–2100 period forced by CMIP5 historical and 
RCP8.5 emissions (Sexton et al., 2021; Yamazaki et al., 2021). Each ensemble member has a horizontal resolu-
tion of approximately 60 km at mid-latitudes and was run for a 200-year period from 1900 to 2100. The 52 param-
eters perturbed for the PPE simulations are related to physical processes, such as convection, gravity wave drag, 
boundary layers, cloud radiation, cloud microphysics, aerosols, and land surface and snow (Table 1 in Sexton 
et al., 2021). Before being used, all data were interpolated to 2.5° × 2.5° resolution, and the period from 1979 to 
2014 was selected for evaluation in this study.
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Before running the coupled model, the same parameters are perturbed in the AMIP type run firstly (Sexton 
et al., 2021). This is a viable method of using relatively inexpensive atmospheric experiments to identify model 
parameter combination variants that can be applied in coupled model runs. The atmospheric experiment uses 
time-varying CO2 concentrations from CMIP5 and prescribed SST and sea ice from the HadISST2 observational 
data set (Titchner & Rayner, 2014) for the period December 2004 to November 2009. The atmospheric experi-
ment has 518 ensemble members. They have the same resolution as the ensemble members of the coupled model. 
Before being used, all data were interpolated to 2.5° × 2.5° resolution. The analysis of the AMIP simulations is 
presented in Supporting Information S1.

2.3. Methods

The simulation skills are calculated by the following metrics:

 (1)  The standard deviation (σx)

The term σx is the standard deviation of the simulated variable (x) and is calculated as follows:
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where i is one of different horizontal grid points (or precipitation in different ensemble members), N is the 
number of horizontal grid points (or the number of ensemble members), and 𝐴𝐴 𝑥𝑥 is the mean of variable x (Guo 
et al., 2014; Yang et al., 2013).

 (2)  Correlation coefficient (R)

R is the correlation coefficient between two variables and is calculated as follows:
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where xi is the precipitation at different grid points (or the values of the parameter from different ensemble 
members), yi is the reference variable at one of many grid points (or simulation skills), and 𝐴𝐴 𝑦𝑦 is the mean of vari-
able y (Guo et al., 2014; Yang et al., 2013).

 (3)  Root mean square error of correlation and standard deviation ratio (RMSE-CSD)

To quantify the bias of the simulation, we use RMSE-CSD to measure the model bias between the model simu-
lations and observations, as has been adopted in past studies (Zhang et al., 2022). The formula is described as 
follows:
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where R is the spatial correlation coefficient between the models and observed data and 𝐴𝐴 𝐴𝐴𝑥𝑥∕𝐴𝐴𝑦𝑦 is the standard 
deviation ratio between the model field and the observed field. Spatial correlation coefficients and standard 
deviation ratios are two important parameters for evaluating model simulations using Taylor plots (Taylor, 2001).

 (4)  Generalized linear model (GLM)

A GLM was used herein to analyze the responses of the perturbed parameters, including their linear and nonlin-
ear interaction effects. The GLM assumes that the response of precipitation is a linear function of those multiple 
perturbed parameters:
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where Y represents the response variable (e.g., precipitation); pj represents 
the jth parameter; βj and βj,k represent the coefficients of linear and two-way 
interaction terms, respectively; and ε denotes the residual and follows an 
independent normal distribution with a zero mean and unit variance (Guo 
et al., 2014; Qian et al., 2015).

The GLM establishes the fitting equations by estimating the maximum likeli-
hood between the parameter (p) and the simulation (Y). The GLM calculates 
the coefficient of determination (R 2) of the model fitness, interpreted vari-
ance, and the P-value for each parameter. Cj, Cind, Cint are used to represent 
the relative contribution of the jth parameter, the sum of the contributions of 
all selected parameters and the sum of the relative contributions of the inter-
acting terms between each pair of the parameters, respectively. The reduction 
in residual sum square caused by each parameter (or all selected parameters 
or two interacting parameters) is used to calculate its relative contribution 
(Cj, Cind, Cint) (Guo et al., 2014; Qian et al., 2015).

3. Results
3.1. PPE-20 Ensemble Mean Simulations

We first investigate the PPE-20 ensemble mean (PPE-20M) on the simu-
lations of the climate mean ASM precipitation and 850-hPa wind patterns, 
as shown in Figure 1. The observed ASM precipitation mainly shows three 
strong centers (above 12 mm day −1) over the East Arabian Sea, over the Bay 
of Bengal (BOB) and south slope of the TP, and over the South China Sea 
and Philippine Islands. The monsoon rainbelt (above 4 mm day −1) extends 
north to mid-high latitudes over the East Eurasian continent. The monsoon 
airflow shows a strong westerly over the subtropical Indian Ocean regions 
and turns northward over East Asia. Over the western Pacific, there is an 
obvious anticyclone that indicates the location of the Western Pacific High 
(WPH). Strong precipitation over the western Pacific is mainly located 
within the latitude band of 0–15°N, south of the WPH. The simulation bias 
obtained herein is similar to the results of HadGEM3's AMIP experiment 
(Wong et al., 2018), and the reason for this bias may not be related to sea-air 
interactions.

The PPE-20M reproduced the large-scale ASM precipitation and low-level 
wind patterns well (Figure 1b), but overestimated the strength of precipita-
tion over the south slope of the TP and the western Pacific. The model biases 
are shown in Figure 1c. It is clear that the largest positive precipitation bias 
occurs over the tropical western Pacific. Moreover, the model overestimated 

precipitation over the southern slope of the TP and Indo-China Peninsula (ICP) and mainly underestimated 
precipitation over the Indian subcontinent and BOB in the ASM region. The 850-hPa wind biases mainly appear 
as anomalously strong westerlies from the Indian Ocean to the western Pacific Ocean, with a cyclonic anomaly 
over East Asia and the midlatitude western Pacific. We infer that the airflow bias may transport excessive water 
vapor from the Indian Ocean to the western Pacific and may contribute to the precipitation bias.

3.2. Simulation Skills of the PPE-20 Members

We analyze the ensemble spread and simulation skills of all the members in this subsection. It is worth noting that 
the area (10ºS–50ºN, 60ºE–160ºE) for calculating the RMSE-CSD and the Taylor diagram are shown in Figure 1. 
The model biases of PPE-20M are also compared with the biases of the individual ensemble member to further 
understand their possible causes. First, the quantitative understanding of the ensembles' skill in capturing the 
ASM precipitation pattern is analyzed with a Taylor diagram in Figure 2. For all ensemble members, the corre-
lation coefficients are larger than 0.6 (Figure 2), indicating that all selected members can basically reproduce the 

Figure 1. Precipitation (shaded; unit: mm day −1) and 850-hPa wind (vector; 
unit: m s −1) climatology for boreal summer (JJA) from 1979 to 2014 in the 
Global Precipitation Climatology Project/ERA5 (a) and PPE-20M (b) results. 
Model biases in 850-hPa winds and precipitation are also shown (c).
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large-scale ASM pattern. Moreover, all of the standard deviation ratios are greater than 1 (Figure 2), implying 
that the intensities of ASM precipitation are overestimated in general for all the ensemble members. Moreover, 
it is worth noting that the skill of PPE-20M (No. 21 in Figure 2) is not the highest, implying that the ensemble 
mean is not the best choice for reducing model biases in PPE simulations. It is clear that No. 11 (02123) and No. 
15 (02491) show better skills than all the other ensemble members, while No. 19 (02884) shows the lowest skill. 
Thus, by comparing the model results among these simulations, the sensitivities of the ASM simulation to the 
perturbed parameters in PPE-20 can be identified.

We use RMSE-CSD (Equation 3) as the metric to comprehensively measure the simulation skill for both the 
pattern correlation and standard ratio. When the RMSE-CSD is close to 0 (i.e., when the correlation coefficient 
and standard deviation ratio are close to 1), the ensemble member shows high skill in ASM simulation. The 
ensemble member (02491) with the highest simulation skill and the ensemble member (02884) with the lowest 
skill were obtained by ranking the simulation skills in the ASM region (Table S1 in Supporting Information S1). 
In the following text, we compare the simulations between the members with the highest and lowest skills, as 
shown in Figure 3. The precipitation patterns obtained using the highest-skill ensemble member (No. 02491) and 
the lowest-skill ensemble member (No. 02884) are similar overall, except over the Indian subcontinent (Figures 3a 
and 3c). Compared to the PPE-20M in Figure 1b, No. 02491 captures the intensity of the precipitation over the 
south slope of the TP and BOB well, while No. 02884 simulates even stronger precipitation biases in these two 

Figure 2. Taylor diagram of all ensemble members and ensemble mean (PPE-20M) for the simulation of boreal summer 
precipitation in Asia (The region is shown in Figure 1).
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places (Figure 3c) than PPE-20M (Figure 1b). Moreover, No. 02884 underestimated precipitation over the Indian 
subcontinent while overestimating precipitation over the western Pacific.

The biases of the two ensemble members are quantitively calculated in Figures 3b and 3d. In No. 02884 (Figure 3d), 
the model shows a strong positive precipitation bias in the tropical western Pacific and on the southern slopes 
of the TP (biases larger than 5  mm  day −1), while it shows a strong negative precipitation bias in the Indian 
subcon tinent (biases lower than −5 mm day −1). For the highest skill member (No. 02491), the pattern (Figure 3b) 
of the precipitation bias was overall similar to that identified with No. 02884 (Figure 3d), but the magnitude 
was much smaller. In particular, the biases over Eurasian lands are very small, while the positive biases over the 
tropical western Pacific are overall less than 5 mm day −1. Regarding low-level circulation, both members of PPE 
simulate a strong westerly wind biases along 15°N, similar to that seen for PPE-20M (Figure 1c). Moreover, No. 
02884 shows a strong cyclonic circulation bias over the tropical western Pacific (Figure 3d), indicating that the 
WPH is very weak and the high pressure center is also off in this case. We further investigated the SST biases 
in these cases (Figure S2 in Supporting Information S1). The results show that the strong positive precipitation 
bias in the tropical western Pacific is accompanied by a cold SST bias in the ensemble (Figure S2d in Supporting 
Information S1). Precipitation in southern China had a positive correlation with the Indian Ocean surface temper-
ature and a negative correlation with the tropical western Pacific surface temperature, consistent with the results 
of Chang et al. (2013). Previous observations also revealed that the correlations between precipitation and SST 
are negative in the western Pacific (Lu & Lu, 2014). The increase in precipitation in the tropical western Pacific 
is not triggered by a locally warm SST (Chang et al., 2013; Lu & Lu, 2014). This negative correlation is the result 
of SST response to the atmospheric influences (Lu & Lu, 2014). Uncertainties in the atmospheric model physics 
should be the main cause of this kind of bias. In the next section, we analyze the 52 perturbed parameters in 
PPE-20 and determine the connections between these perturbed parameters and the precipitation biases.

3.3. Sensitivity of the ASM Precipitation Simulation to the Perturbed Parameters

To understand the influence of a single perturbed parameter on the ASM precipitation simulations, we calculated 
the linear correlations (Equation 2) between the RMSE-CSD and the values in the 20 ensemble runs for each 
of the 52 parameters, and the correlations of four parameters passed the 90% significance level of the Student's 
T-test (Figure 4), indicating that the ASM precipitation simulation and associated model biases are significantly 
sensitive to these four parameters. Among the four parameters, the RMSE-CSD was positively correlated with 

Figure 3. Simulations of precipitation patterns (shaded; unit: mm day −1) and 850-hPa wind fields (vector; unit: m s −1) 
based on the highest skill ensemble member (No. 02491) (a) and the lowest skill ensemble member (No. 02884) (c) and the 
corresponding biases (b, d).
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three parameters (ent_fac_dp, ps_cloud-ph and psm), while one parameter (qlmin) was negatively correlated with 
RMSE-CSD. The parameter “ent_fac_dp,” “qlmin,” “ps_cloud-ph,” and “psm” denote “the deep entrainment 
amplitude,” “the minimum critical cloud condensate, which is the minimum value of the function that defines 
the maximum amount of condensation a convective parcel can hold before it is converted into precipitation,” “the 
pH of cloud drops and is used to control in-cloud SO4 2- production dependent on SO2 availability,” and “scaling 
factor for critical and saturation soil moisture levels toward the wilt level” (Table S2 in Supporting Informa-
tion S1; Table 1 in Sexton et al., 2021). Increasing the value of the “ent_fac_dp” will reduce the depth of convec-
tion and suppress active precipitating convection. Reducing the value of the “qlmin” will cool the troposphere, 
while increasing it will warm the troposphere by altering the amount of high clouds. Increasing the value of the 
“ps_cloud-ph” will lead to faster SO2 oxidation by ozone in cloud water, so more SO4 2- production will occur. The 

Figure 4. Linear correlations between the model simulation Root mean square error of correlation and standard deviation 
ratio and 52 parameters. Variables with red boxes indicate that the correlations of these parameters passed the 90% 
significance level of the Student's T-test.
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higher value of the “psm” will lead to larger soil moisture regimes where soil moisture limits evapotranspiration, 
with consequent implications for moisture and surface energy fluxes (Sexton et al., 2021).

Box plots are provided in Figure S3 in Supporting Information S1 for understanding the distributions of the above 
four parameters. The parameter values obtained in the highest-skill case (No. 02491) and lowest-skill case (No. 
02884) are marked with blue and red dots, respectively. It is clear that the highest-skill simulation was associated 
with lower ent_fac_dp, ps_cloud-ph, and psm values and a higher qlmin value. This result indicates that the 
reduced convection depth and suppressed precipitation, increased threshold of the condensation of convective 
parcels (more clouds and water vapor and less condensation), decreased pH in cloud drops to reduce the SO4 2− 
contents, and evapotranspiration could improve the simulations of moist convection, cloud-aerosol radiation, and 
processes. This will contribute to the overall skill of the ASM simulation and reduce the biases of the precipitation 
simulation in HadGEM3 GC3.05. To further understand the joint contributions of these four parameters to the 
simulation of the Asian summer precipitation pattern, the GLM method was applied (Equation 4) to quanti tively 
calculate the single and joint contributions of the parameters to the precipitation simulations in Figure 5. It is 
clear that ent_fac_dp is closely connected with the precipitation simulation (contributions amounted to 16.7%). 
In particular, this parameter contributes more than 50% in the western Pacific, where the positive precipita-
tion biases are large (Figure 5a). Similar conclusions can be drawn from the large ensemble of AMIP experi-
ments, thus demonstrating the robustness of the contribution of this parameter to precipitation biases (Figures 
S5–S8 in Supporting Information S1). The ps_cloud-ph parameter mainly shows an influence over the western 
Indian subcontinent, south TP, south China and northwest Pacific, with a total contribution of 11.1% (Figure 5c). 
This parameter may contribute to precipitation biases over the low-latitude Asian continent and adjacent ocean 

Figure 5. Relative contributions of the four analyzed parameters to precipitation in Asia (Cj) (shaded; unit: %) (a–d). The 
sum of the relative contributions of the four parameters to Asian precipitation (Cind) (shade; unit: %) (e). The sum of the 
contributions of the interacting terms between each pair of the parameters to precipitation in Asia (Cint) (shaded; unit: %) (f). 
The number in the upper right corner indicates the regional average.
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regions. Moreover, it seems that this parameter is closely connected with the dry bias over India in No. 02884. 
When this parameter is large, more 𝐴𝐴 SO

2−

4
 is produced, associated with less clouds and less precipitation (Figure 

S4 in Supporting Information S1). The contributions of the other two parameters (Figures 5b and 5d) alone are 
relatively small. The influences of the joint contributions of the total four parameters (Figure 5e) are the largest 
and of the joint contributions of any two combinations of these four parameters (Figure 5f) are larger than the 
individual one. These three (qlmin, ps_cloud-ph, psm) contributions to precipitation biases may only become 
more significant in air-sea coupled runs, since their contributions in AMIP runs are very limited (Figure S7 in 
Supporting Information S1). It is obvious that the joint contributions of these four parameters can contribute 
up to 43.3% of the summer precipitation biases. Thus, these four parameters are the key tunable parameters in 
HadGEM3-GC3.05 when simulating the intensity of ASM precipitation.

4. Conclusions and Discussions
In this study, the ASM simulation skill of the PPE-20 was investigated for use in HadGEM3-GC3.05. The PPE-20 
mean could basically reproduce the large-scale pattern of ASM precipitation but mainly overestimated precipita-
tion over the western Pacific, underestimated precipitation over the Indian subcontinent and simulated an overall 
strong monsoonal westerly along 15°N. Further analysis suggested that the precipitation biases are sensitive to 
four parameters (ent_fac_dp, qlmin, ps_cloud-ph, and psm) in the model. A decrease in ent_fac_dp could effec-
tively reduce precipitation biases over the tropical western Pacific, while a decrease in ps_cloud-ph could favor 
the occurrence of precipitation over the Indian subcontinent in fully coupled runs. The joint contributions of these 
four parameters contribute 43.3% of the summer precipitation biases, and these parameters can be used as the key 
tuning parameters to improve the overall performance of ASM simulations in future studies. However, we need to 
mention that in this study, precipitation was the variable targeted with the goal of understanding the sensitivity to 
the physical model parameters. Notably, that the westerly wind biases identified along 15°N are not very sensitive 
to the analyzed parameters, and the possible causes for this need further study.

Data Availability Statement
The ERA5 data set utilized herein is available at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanaly-
sis-era5-pressure-levels-monthly-means?tab=overview. The GPCP precipitation data set utilized herein is availa-
ble at http://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html. The PPE-20 data are available by arrangement 
with the Met Office, please use the enquiry form at https://www.metoffice.gov.uk/forms/contact-us-ukcp18.
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