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ABSTRACT

The outputs of the Chinese Academy of Sciences (CAS) Flexible Global Ocean-Atmosphere-Land System (FGOALS-
f3-L)  model  for  the  decadal  climate  prediction  project  (DCPP)  of  the  Coupled  Model  Intercomparison  Project  Phase  6
(CMIP6)  are  described  in  this  paper.  The  FGOALS-f3-L  was  initialized  through  the  upgraded,  weakly  coupled  data
assimilation scheme, referred to as EnOI-IAU, which assimilates observational anomalies of sea surface temperature (SST)
and upper-level (0–1000-m) ocean temperature and salinity profiles into the coupled model. Then, nine ensemble members
of 10-year hindcast/forecast experiments were conducted for each initial year over the period of 1960–2021, based on initial
conditions  produced  by  three  initialization  experiments.  The  hindcast  and  forecast  experiments  follow  the  experiment
designs of the Component-A and Component-B of the DCPP, respectively. The decadal prediction output datasets contain a
total  of  44  monthly  mean  atmospheric  and  oceanic  variables.  The  preliminary  evaluation  indicates  that  the  hindcast
experiments  show  significant  predictive  skill  for  the  interannual  variations  of  SST  in  the  north  Pacific  and  multi-year
variations of SST in the subtropical Pacific and the southern Indian Ocean.
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 1.    Introduction

Decision-making  processes  for  climate  change  adapta-
tion and mitigation rely heavily on climate change informa-

tion  for  the  next  10  years,  which  is  estimated  by  using
decadal climate prediction (also referred to as near-term cli-
mate prediction). Decadal climate prediction lies between sea-
sonal to interannual prediction and long-term climate projec-
tion, serving as an indispensable part of seamless climate pre-
diction (Meehl et al., 2021).

As  a  topic  on  the  international  scientific  frontier,
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Database profile

Database title CAS FGOALS-f3-L Model Datasets for CMIP6 DCPP Experiment
Time range dcppA-hindcast: 1960–2016

dcppB-forecast: 2017–21
Geographical scope dcppA-hindcast: global

dcppB-forecast: global
Data format version 4 of Network Common Data Form (NetCDF)
Data volume 4.07 TB for dcppA-hindcast

351GB for dcppB-forecast
Data service system https://esg.lasg.ac.cn/CMIP6/DCPP/CAS/FGOALS-f3-L/
Sources of funding The National Key Research and Development Program of China (Grant No. 2018YFA0606300), the NSFC (Grant

No. 42075163), the NSFC BSCTPES project (Grant No. 41988101), and the NSFC (Grant No. 42205039)
Database
composition

1. The dcppA-hindcast comprises nine-member hindcasts initialized on 25, 28, and 30 November for each year during
1960–2016, containing 44 monthly mean atmospheric and oceanic variables.

2. The dcppB-hindcast comprises nine-member hindcasts initialized on 25, 28, and 30 November for each year during
2017–21, containing 44 monthly mean atmospheric and oceanic variables.
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decadal climate prediction has become a hotspot in climate
change research over the last decade. Since 2007, many cli-
mate modeling centers around the world have been actively
developing  decadal  prediction  systems  and  conducting
decadal  prediction  experiments  (Kataoka  et  al.,  2020;
Bethke et al., 2021; Bilbao et al., 2021; Sospedra-Alfonso et
al.,  2021; Carmo-Costa  et  al.,  2022).  The  World  Climate
Research Program (WCRP) has identified decadal climate pre-
diction  as  one  of  seven  grand  challenges  (Kushnir  et  al.,
2019)  and  listed  “Prediction  of  the  near-term  evolution  of
the  climate  system”  as  one  of  four  scientific  objectives  of
the  WCRP  Strategic  Plan  2019–2028  (WCRP  JSC,  2019).
The decadal  climate prediction experiment  was one of  two
core  experiments  of  the  Coupled  Model  Intercomparison
Project Phase 5 (CMIP5) (Taylor et al., 2009). The Decadal
Climate Prediction Project (DCPP) was further endorsed by
the  Coupled  Model  Intercomparison  Project  Phase  6
(CMIP6) (Boer et al., 2016).

Decadal climate prediction is essentially a combination
of  the  initial  value problem and the forced boundary value
problem (Meehl et al., 2009). There are three sources of cli-
mate  predictability  at  decadal  to  interdecadal  time  scales,
including  the  committed  change  (caused  by  the  inertia  of
the oceans as a response to historical  external  forcing),  the
time  evolution  of  internally  generated  climate  variability,
and the future path of external forcing (Kirtman et al., 2013).
The major difference between decadal prediction and climate
projection  is  that  the  former’s  model  initial  states  are
obtained through initialization, that is, assimilating observa-
tional data into the model. The specified external forcing for
decadal predictions is identical to the non-initialized climate
simulations (Doblas-Reyes et al., 2013).

Remarkable progress has been made in assessments of
decadal predictions (Smith et al., 2020). The multi-year aver-
aged global mean surface temperature and sea surface temper-
ature (SST) in the North Atlantic (Borchert et al., 2021), the
tropical  Indian  Ocean  (Guemas  et  al.,  2013),  the  Southern
Ocean  (Saurral  et  al.,  2020),  and  the  North  Pacific  (Meehl
et al., 2016) are highly predictable. However, the decadal pre-
diction skill for land precipitation is generally lower, except
for  some  scattered  areas  such  as  the  Sahel,  the  Tibetan
Plateau,  and  Northeast  Eurasia  (Sheen  et  al.,  2017; Smith
et al., 2019; Hu and Zhou, 2021).

The  DCPP  is  a  coordinated  multi-model  investigation
into decadal prediction, predictability, and variability that con-
tributes  to  CMIP6,  to  the  World  Climate  Research  Pro-
gramme  (WCRP)  Grand  Challenge  on  Near  Term Climate
Prediction,  and  to  other  activities  (https://www.wcrp-cli-
mate.org/dcp-overview)  (Boer  et  al.,  2016).  Component  A
includes  the  assimilation experiments  and the  retrospective
decadal forecasts (hindcasts) experiments.  The assimilation
experiments  introduce  observation-based  data  into  the
model through data assimilation methods to generate initial
conditions  for  hindcasts/forecasts.  The  hindcasts  are  inte-
grated for up to several years and used to measure the predic-
tive  skill  and  predictability  of  historical  climate  variations.

Component  B  undertakes  the  quasi-real-time  decadal  fore-
casts as a basis for potential operational forecast production.
Component C includes several slice experiments of decadal
prediction for either natural or naturally forced climate varia-
tions (e.g., the global warming hiatus and volcanoes), which
are used to support the mechanism studies of decadal predic-
tion.

The Flexible  Global  Ocean–Atmosphere–Land System
(FGOALS-f3-L) climate system model is a fully coupled gen-
eral circulation model developed by the State Key Laboratory
of Numerical Modeling for Atmospheric Sciences and Geo-
physical Fluid Dynamics (LASG) in the Institute of Atmo-
spheric Physics (IAP) of the Chinese Academy of Sciences
(CAS)  (Guo  et  al.,  2020a, b; He  et  al.,  2020).  We  have
recently finished the DCPP decadal hindcast (Component A)
and  decadal  forecast  (Component  B)  simulations.  In  this
paper,  we  provide  descriptions  of  the  experiment  designs
and data outputs.

The  remainder  of  this  paper  is  organized  as  follows.
The  model,  experimental  designs  and  validation  methods
are introduced in section 2. In section 3, we show the prelimi-
nary  technical  validation  of  the  outputs  from  the  CAS
FGOALS-f3-L decadal prediction experiments. In section 4,
usage notes are provided.

 2.    Model, experiment, and method

 2.1.    CAS FGOALS-f3-L

The  FGOALS-f3-L  model  is  one  of  three  versions  of
CAS  models  that  have  participated  in  CMIP6  [see  (Zhou
et  al.,  2020)  for  a  review  of  Chinese  contributions  to
CMIP6].  It  is  the  low-resolution  version  of  FGOALS-f3,
labelled by “L”. Its atmospheric component is version 2.2 of
the  Finite-volume  Atmospheric  model  (FAMIL)  (Zhou
et al., 2012; Bao et al., 2019; Li et al., 2019), with a horizonal
resolution  approximately  equal  to  1°×1°.  The  FAMIL  has
32 layers in the vertical direction, with the top layer at 2.16
hPa  (Guo  et  al.,  2020a; He  et  al.,  2020).  The  “f ”  in
FGOALS-f3-L  represents  the  atmospheric  component
FAMIL. Its  ocean component is  the low-resolution version
3  of  the  LASG/IAP  Climate  system  Ocean  Model
(LICOM3)  (Liu  et  al.,  2012; Yu  et  al.,  2018; Lin  et  al.,
2020),  with  a  horizontal  resolution  of  1°×1°.  To  better
resolve  equatorial  waves,  the  meridional  resolution  refines
from  1°  to  0.5°  near  the  equator.  The  low-resolution
LICOM3 has  30 layers  in  the  vertical  direction,  which has
10-m layers in the upper 150 m and uneven vertical  layers
below 150  m.  Its  land  and  sea  ice  components  are  version
4.0 of the Community Land Model (CLM4) (Oleson et al.,
2010)  and  version  4  of  the  Los  Alamos  sea  ice  model
(CICE4) (Hunke and Lipscomb, 2010), respectively. These
four components are coupled together through version 7 of
the coupler module from the National Center for Atmospheric
Research  (NCAR)  (http://www.cesm.ucar.edu/models/
cesm1.0/cpl7/).

More details of the basic framework configuration and
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simulation  performance  of  CAS  FGOALS-f3-L  can  be
found in He et al. (2019, 2020), and Guo et al. (2020a).

 2.2.    Initialization scheme

The  FGOALS-f3-L  was  initialized  through  the
upgraded  weakly  coupled  data  initialization  scheme  EnOI-
IAU (Wu et al., 2018). The EnOI-IAU initialization scheme
integrates two conventional assimilation approaches, ensem-
ble  optimal  interpolation  (EnOI)  and  incremental  analysis
update  (IAU).  The  EnOI  generates  analysis  increments
(Oke et al., 2002), and the IAU incorporates the increments
into  the  model  (Bloom  et  al.,  1996).  The  EnOI  does  not
need  ensemble  simulations  because  its  background  error
covariance is fixed and pre-prepared, which greatly reduces
computational cost. In this study, the background error covari-
ance matrix is derived from the historical simulations.

2000 km× cos(latitude)

The  EnOI-IAU  scheme  was  developed  from  the  IAU
scheme that  assimilates  gridded  oceanic  analysis  data  (Wu
and Zhou, 2012; Wu et al., 2015). The EnOI-IAU has been
used for the FGOALS-s2 models and has shown high skill
for  interannual  and  interdecadal  predictions  (Sun  et  al.,
2018; Wu  et  al.,  2018; Hu  et  al.,  2019, 2020).  Compared
with that applied to the FGOALS-s2, the EnOI-IAU scheme
is  upgraded  for  the  new  decadal  prediction  experiment  in
the  following three  aspects.  First,  horizontal  localization  is
introduced,  that  is,  the  model-state  variables  are  not  influ-
enced by observations farther than the distance of the localiza-
tion radius (Anderson, 2007).  The localization radius is set
as  in this study. Second, global obser-
vations  are  assimilated  with  non-assimilation  zones  in  the
high latitudes being removed, which would eliminate artifi-
cial discontinuity between assimilation and non-assimilation
zones. Third, the number of fixed ensemble members for cal-
culating  the  background  error  covariance  in  the  EnOI  is
increased from 100 to 150, which can generate more accu-
rately sampled covariances.

The assimilation acted only on the ocean component of
the  coupled  model.  The  other  model  components  are  con-
trolled by the ocean component through the model coupling
processes.  The  assimilated  observational  datasets  include:
(1) gridded SST from the HadISST version 1.1, with a resolu-
tion of 1.0°×1.0° (Rayner et  al.,  2003),  and (2) upper-level

(0–1000-m)  temperature  and  salinity  profiles  from  the
EN.4.2.2  dataset  produced  by  the  Hadley  Centre  (Good
et al., 2013). The data climatology is removed and replaced
by  the  model  climatology  before  the  assimilation,  that  is,
anomaly  initialization  was  performed  (Smith  et  al.,  2013).
The  climatology  of  the  EN4  profiles  was  estimated  using
the  gridded  analysis  product  of  the  EN4  for  the  period  of
1961–90. The model climatology was derived from the ensem-
ble mean of the historical runs over the same period.

Based on the EnOI-IAU initialization scheme, we con-
ducted  three  independent  assimilation  experiments,  named
as Assim-as1, Assim-as2, and Assim-as3, respectively. The
assimilation runs were conducted from 1950 to the present.
The first ten-year results were not used. They each provided
initial  conditions  for  three  sets  of  hindcast/forecast  experi-
ments.

 2.3.    Experiment designs

For the DCPP Component A (Component B), nine-mem-
ber 10-year hindcast (forecasts) experiments were conducted
once per year for the period of 1960–2016 (2017–21), with
initial conditions derived from the outputs of the three assimi-
lation  experiments.  For  each  assimilation  run,  the  outputs
on 25, 28, and 30 November were specified as initial condi-
tions for the three hindcast/forecast runs, respectively. During
the  integrations  of  the  hindcast/forecast  runs,  time-varying
external radiative forcing due to natural factors and anthro-
pogenic activity was specified. The specified forcing before
2014 is the same as the CMIP6 historical climate simulation
experiments.  For  the  forecasts  after  2014,  the “medium”
Shared Socioeconomic Pathway (SSP) 2-4.5 forcing of Sce-
nario MIP is used. The experiments conducted in this study
are summarized in Table 1.

 2.4.    Evaluation methods

Lead-time  dependent  model  drifts  due  to  the  initial
shock were removed from each month of the prediction data
to produce anomalies relative to the period 1970 to 2016 for
the hindcasts and forecasts in advance, following the proce-
dures  recommended  by  Boer  et  al.  (2016).  We  used  the
anomaly  correlation  coefficient  (ACC)  and  the  mean
squared skill score (MSSS) to evaluate prediction skill. The

Table 1.   Experiment designs.

Experiment_id Variant_label Experimental design

dcppA-hindcast r1i1p1f1-r3i1p1f1 Hindcasts initialized on 25, 28, and 30 November for each year during 1960–2016, with initial condi-
tions derived from the Aassim-as1 experiments

r4i1p1f1-r6i1p1f1 Hindcasts initialized on 25, 28, and 30 November for each year during 1960–2016, with initial condi-
tions derived from the Aassim-as2 experiments

r7i1p1f1-r9i1p1f1 Hindcasts initialized on 25, 28, and 30 November for each year during 1960–2016, with initial condi-
tions derived from the Aassim-as3 experiments

dcppB-forecast r1i1p1f1-r3i1p1f1 Forecasts initialized on 25, 28, and 30 November for each year during 2017–21, with initial conditions
derived from the Aassim-as1 experiments

r4i1p1f1-r6i1p1f1 Forecasts initialized on 25, 28, and 30 November for each year during 2017–21, with initial conditions
derived from the Aassim-as2 experiments

r7i1p1f1-r9i1p1f1 Forecasts initialized on 25, 28, and 30 November for each year during 2017–21, with initial conditions
derived from the Aassim-as3 experiments
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predictive targets analyzed in this study are the annual mean
variables in the first forecast year (labeled as year-1), averages
over the forecast years 1–5 (labeled as year-1-5), and 6–10
(labeled  as  year-6-10).  As  an  example,  the  prediction  case
started from November in 1960, the year 1961 is the target
of  the  year-1  prediction,  and  the  average  over  1961–65
(1966–70)  is  the  target  of  the  year-1-5  (year-6-10)  predic-
tion.

MSSS(P,H)

We use two metrics to measure the predictive skill and
estimate  the  impacts  of  the  initialization.  The  first  is  the
MSSS calculated against the reference prediction of uninitial-
ized  simulations  [ ]  (Goddard  et  al.,  2013),
which can be written as: 

MSSS(P,H) = 1− MSEP

MSEH
, (1)

 

MSSSP = 1− MSEP

MSEŌ
, (2)

 

MSSSH = 1−MSEH

MSEŌ
, (3)

Ō

MSE
MSSS(P,H)

MSSSP (MSSSH)

where the subscripts P, H, and  represent initialized predic-
tions, nine-member ensemble mean uninitialized simulations
by FGOALS-f3-L (composed  of  the  historical  experiments
for the period 1960–2014 and the SSP 2-4.5 projections for
the period 2015–31), and reference predictions of the climato-
logical  average  (or  zero  anomaly  forecasts),  respectively.
The  represents the mean squared error against the obser-
vation. The  measures the improvement in accu-
racy of the initialized predictions over the reference prediction
of the uninitialized simulations. The  mea-
sures the improvement in accuracy of the initialized predic-
tions (uninitialized simulations) over the reference prediction
of the climatological average, respectively.

ACCP

ACCH(ACCP−ACCH) ACCP (ACCH)
The second metric is the difference between the 

and .  Here,  the  is  the
correlation coefficient between the observed and initialized
predicted  (uninitialized  simulated)  anomalies,  respectively
(Goddard et al., 2013). The ACC measures the linear associa-
tion  between  the  predictions  and  the  observations,  and  the
ACC difference can be attributed to initialization.

The following observational datasets were used for verifi-
cation: (1) Global mean near-surface temperature at a horizon-
tal resolution of 5°×5° from the HadCRUT.5.0.1.0 (Morice
et al., 2012). (2) Precipitation from the Global Precipitation
Climatology  Centre  (GPCC)  at  a  horizontal  resolution  of
2.5°×2.5° (Schneider et al., 2014). (3) SST from the NOAA
Extended  Reconstructed  Sea  Surface  Temperature  Version
5 (ERSST) at a horizontal resolution of 2°×2° (Huang et al.,
2017). (4) sea level pressure (SLP) from the Hadley Centre
Sea Level Pressure dataset (HadSLP2) at a horizontal resolu-
tion of 5°×5° (Allan and Ansell, 2006). (5) EN.4.2.2 gridded
subsurface  temperature  for  the  global  oceans  (Good  et  al.,
2013).

Following Goddard et al. (2013), the significance levels
of the predictive skill are tested by a nonparametric bootstrap
approach with replacement to generate each score's sampling
distribution based on 1000 re-samplings. The 2.5% and 97.5%
quantile estimate of the distribution of a skill score determines
its 95% confidence interval.

 3.    Technical validation

We first  evaluate the accuracy of the initial  conditions
derived  from  the  assimilation  experiments.  The  ACC  and
MSE of  the November  SST anomaly (SSTA) and the total
ocean heat content in the upper 300 m (HCT300) are shown
in Fig. 1. The three assimilation experiments reproduce the
observed variability of SSTA in the tropical central-eastern
Pacific, the tropical Atlantic, and the tropical Indian Ocean
well,  with ACC greater than 0.8 and MSE less than 0.1°C.
Compared with the tropics, there are larger biases for SSTA
in the middle and high latitudes, especially in the northeastern
Pacific (Figs. 1a–f). For the HCT300, the ACC in the tropical
Pacific and the subtropical North Atlantic is higher than that
in  other  sea  areas  (Figs.  1g–i),  and  large  MSE  is  found
mainly in  the  equator  and coastal  regions with  the  western
boundary currents (Figs. 1j–l).

MSSSP MSSSH

MSSSP MSSSH

The MSSS of annual mean SST and land surface air tem-
perature  (SAT)  anomalies  is  evaluated  for  forecast  year  1,
years 1–5, and years 6–10, respectively (Fig. 2). MSSS(P, H)
indicates that the initialization significantly improves predic-
tive  skill  of  hindcast  runs  for  year-1  SSTA  in  the  north
Pacific,  the  tropical  Atlantic,  the  tropical  southeastern
Indian Ocean, and the Tasman sea relative to the uninitialized
historical  runs  (Fig.  2a).  For  forecast  years  1–5,  the  added
value of initialization is mainly in the South Atlantic Ocean
and the South Indian Ocean, while the improvement in the
North  Atlantic  is  limited  (Fig.  2b).  The  spatial  distribution
of MSSS(P, H) for forecast years 6–10 is similar to that for
forecast years 1–5, except for the subpolar gyre of the North
Atlantic (Fig. 2c). It is found that there is strong model drift
in the subpolar gyre that causes a strong cold bias there (not
shown).  The  predictive  skill  of  the  initialized  predictions
and the uninitialized simulations compared with the reference
prediction of the climatological average measured by MSSS
(  and )  is  shown  in Figs.  2d–i.  Although
there  is  no  observational  oceanic  information  coming  into
the uninitialized simulations, the specified historical external
forcing  generates  long-term  warming  trends,  which  bring
some  predictive  skill  for  the  runs  (Figs.  2g–i).  Comparing

 and ,  we  can  find  that  the  initializations
have added value in some places, which are generally consis-
tent with the areas with positive MSSS(P, H) (Figs. 2d–f).

ACCP

The ACC skill for annual mean SST and SAT is further
evaluated  (Fig.  3).  For  forecast  year  1,  significant  positive
ACCs  of  the  initialized  predictions  are  seen  globally,  with
the highest skill located at the Indo–Pacific warm pool and
tropical Atlantic (Fig. 3a). The added value of initialization
on prediction skill is investigated using the difference in the
ACC between the initialized prediction ( ) and uninitial-
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ACCH ACCP

ACCH

ACCH

ized  simulations  ( )  (Fig.  3d).  is  significantly
improved  in  the  North  Pacific,  the  Tasman  sea,  the  Scotia
sea,  and the subpolar gyre of the North Atlantic relative to

 (Fig. 3g). For the multi-year predictions, both ACCP

and  are driven by the long-term trend of surface tem-
perature,  and their  difference shows that  the improvements
resulting from the initialization are very limited (Figs. 3b, e,
h, and c, f, i).

The global mean surface temperature (GMST) is a fre-
quently used metric to measure global  climate change,  and
thus  we  further  show  the  prediction  of  the  annual  mean
GMST averaged over forecast year 1, years 1–5, and years
6–10 (Fig. 4). For forecast year 1, the initialized prediction
shows much higher skill in reproducing the interannual vari-
ability  of  GMST  than  the  uninitialized  simulations,  with
their  correlation  coefficients  of  the  detrended  GMST  with
the observation being 0.75 and 0.47, respectively (Fig, 4a).
Here, linear detrending is directly applied to GMST indices

for the entire period. For forecast years 1–5 and years 6–10,
the initialized predictions are more skillful than the uninitial-
ized simulations, with the former detrended correlation with
the observation being much higher than the latter (Figs. 4b,
c). It is also noted that the ensemble spreads (defined as the
range  between  the  minimum  and  maximum  values  across
the ensemble) of the initialized predictions are much smaller
than those of the uninitialized simulations, especially for fore-
cast year 1 and years 1–5.

Finally, we assess ACC skill for annual mean land precip-
itation  and  sea  level  pressure  (SLP)  anomalies.  Compared
with  that  for  surface  temperature,  the  predictive  skill  for
land precipitation is much lower. And the improvements of
the initialized predictions relative to the uninitiated simula-
tions are very scattered (Fig. 5), which is consistent with pre-
vious  studies  (Doblas-Reyes  et  al.,  2013).  The  predictive
skill for SLP is relatively high for forecast year 1 (Fig. 6a).
The ACC skill of the initialized runs is significantly higher

 

 

Fig.  1. Accuracy  of  initial  conditions  provided  by  the  assimilation  runs.  (a–c)  ACC  of  November  SSTA  for  three
assimilation runs. (d–f) Mean squared error (MSE) of November SSTA for three assimilation runs (units:  °C).  (g–i) As in
(a–c), but for ocean heat content from 0–300 m (HCT300). (j–l) As in (d–f), but for HCT300 (units: 1019 J).
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MSSS(P,H)
MSSSP MSSSH

MSSS(P,H)

MSSSP MSSSH

Fig.  2. Predictive  skill  for  annual  mean  sea  surface  temperature  (SST)  and  land  surface  air
temperature measured by mean squared skill score (MSSS). (a–c) for forecast (a) year 1, (c)
years 1–5, and (e) years 6–10. (d–f) As in (a–c), but for . (g–i) As in (a–c), but for . P (H)
represents  the  initialized  predictions  (the  uninitialized  simulations).  measures  the
improvement  in  accuracy  of  the  initialized  predictions  over  the  reference  prediction  of  the
uninitialized  simulations.  ( )  measures  the  improvement  in  accuracy  of  the  initialized
predictions  (uninitialized  simulations)  over  the  reference  prediction  of  the  climatological  average.
Stippling shows where skill is statistically significant with 95% confidence.

 

 

ACCP

ACCH

ACCP ACCH ACCP ACCH

Fig. 3. Predictive skill for SST and land SAT measured by ACC. (a–c)  for forecast (a) year 1, (c)
years 1–5, and (e) years 6–10. (d–f) As in (a–c), but for . (g–i) As in (a–c), but for the difference
of  and .  ( ) is the correlation coefficient between the observed and initialized
predicted  (uninitialized  simulated)  anomalies.  Stippling  shows  where  skill  is  statistically  significant
with 95% confidence.
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than  that  of  the  uninitialized  simulations  over  the  tropics
and extratropical Northern Hemisphere, which suggests that
the initialization remarkably improves predictive skill associ-
ated with ENSO variability (Figs. 6d, g). For forecast years
1–5 and 6–10, the initialized predictions show higher ACC
over  the  extratropical  North  Pacific.  But  in  other  ocean
areas, the improvement for SLP decadal predictive skill due
to initialization is not significant (Figs. 6h, i).

In  addition  to  the  assessments  shown  above,  there  are
some other  assessment  approaches  for  decadal  predictions,
such as partial ACC proposed by Smith et al. (2019), with a
focus  on  the  added  value  of  decadal  prediction  on  internal
variability.  This  approach relies  on  large-ensemble  simula-
tions to separate internal variability and externally forced vari-
ability,  which  could  not  be  achieved  here  because  of  the
small  ensemble  size.  In  the  future,  we  would  further

improve  the  initialization  scheme  and  increase  ensemble
size to offer decadal prediction results with more robust and
reliable predictive skill.

 4.    Usage notes

A full  list  of  CAS FGOALS-f3-L  output  variables  for
CMIP6 DCPP component-A and component-B experiments
is given in Table 2. All the variables are archived at a mon-
thly  time  scale.  The  original  atmospheric  model  grid  is  in
the cube-sphere grid system with a resolution of C96, which
has six tiles and is irregular in the horizontal direction. We
merged and interpolated the six tiles to a global latitude–longi-
tude grid with a nominal resolution of 1° using one-order con-
servation  interpolation  as  required  by  CMIP6,  and  trans-
formed the atmospheric three-dimension variables from the

 

 

Fig.  4. Predictions  of  global  mean  surface  air  temperature  (GMST)  for
forecast  year  1  (a),  years  1–5  (c),  and  years  6–10  (e).  The  black  line
represents the observation. The red (blue) line represents the ensemble mean
of  the  initialized  predictions  (the  uninitialized  historical  runs).  The  red  and
blue  shadings  are  the  ensemble  spreads,  which  are  defined  as  the  range
between the minimum and maximum values across the ensemble.
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Fig.  5. Predictive  skill  for  annual  mean  land  precipitation  measured  by  ACC.  (a–c)  ACC  of  the  nine-member
ensemble mean of  the  initialized prediction runs for  forecast  year  1  (a),  years  1–5 (c),  and years  6–10.  (d–f)  As in
(a–c),  but  for  the historical  runs.  (g–i)  The differences of  ACC between the initialized runs and the historical  runs.
Stippling represents that skill is significant at the 5% level.

 

 

Fig. 6. As in Fig. 5, but for annual mean sea level pressure.
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model layers to pressure levels, following He et al. (2019).
The  orthogonal  curvilinear  coordinate  is  introduced

into LICOM3, and thus the oceanic variables are on the origi-
nal tripolar grid, with the North Pole split into two poles on
two continents at (35°N, 114°E) and (35°N, 66°W), respec-
tively.  The  oceanic  variables  have  360  grid  cells  in  the
zonal direction and 218 grid cells in the meridional direction
(approximately  equal  to  1°  at  a  globally  horizontal  resolu-

tion),  with  uneven  enhanced  meridional  resolution  from
0.5° to 1° near the equator. For the oceanic vector variables,
the resolution is 30 layers, which are 10 m per layer in the
upper 150 m and divided into uneven vertical layers below
150 m. In addition, since the horizontal oceanic vector is on
the orthogonal curvilinear coordinate, it needs to be rotated
according to the angles between the original grid and the lati-
tude–longitude grid before interpolation.

Table 2.   CAS FGOALS-f3-L output variables prepared for CMIP6 DCPP component-A and component-B experiments.

Output name Description Units

hfls Surface Upward Latent Heat Flux W m−2

hfss Surface upward sensible heat flux W m−2

hur Relative Humidity %
hus Specific Humidity kg kg−1

pr Precipitation kg m−2 s−1

ps Surface air pressure Pa
psl Sea level pressure Pa
ta Air temperature K
tas Near-surface air temperature K
ts Surface temperature K
ua Eastward wind m s−1

va Northward wind m s−1

zg Geopotential height m
tos Sea Surface Temperature °C
tob Sea Water Potential Temperature at Sea Floor °C
uo Sea Water X Velocity m s−1

vo Sea Water Y Velocity m s−1

wo Sea Water Vertical Velocity m s−1

so Sea Water Salinity psu
thetao Sea Water Potential Temperature °C

sos Sea Surface Salinity psu
zos Sea Surface Height Above Geoid m

sossq Square of Sea Surface Salinity 10-6

friver Water Flux into Sea Water from Rivers kg m−2 s−1

hfbasinpmdiff Northward Ocean Heat Transport Due to Parameterized Mesoscale Diffusion W
hfsso Surface Downward Sensible Heat Flux W m−2

msftbarot Ocean Barotropic Mass Streamfunction kg s−1

rlntds Surface Net Downward Longwave Radiation W m−2

sob Sea Water Salinity at Sea Floor psu
tauuo Surface Downward X Stress N m−2

wfo Water Flux into Sea Water kg m−2 s−1

zossq Square of Sea Surface Height Above Geoid m2

hfbasin Northward Ocean Heat Transport W
hfds Downward Heat Flux at Sea Water Surface W m−2

msftmz Ocean Meridional Overturning Mass Streamfunction kg s−1

rsntds Net Downward Shortwave Radiation at Sea Water Surface W m−2

tauvo Surface Downward Y Stress N m−2

hfbasinpmadv Northward Ocean Heat Transport Due to Parameterized Mesoscale Advection W
hflso Surface Downward Latent Heat Flux W m−2

mlotstsq Square of Ocean Mixed Layer Thickness Defined by Sigma T m2

msftmzmpa Ocean Meridional Overturning Mass Streamfunction Due to Parameterized Mesoscale Advection kg s−1

tossq Square of Sea Surface Temperature °C2

vsf Virtual Salt Flux into Sea Water kg m−2 s−1

mlotst Ocean Mixed Layer Thickness Defined by Sigma T m
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The format of datasets is the version 4 of Network Com-
mon Data Form (NetCDF), which can be easily read and writ-
ten by professional common software such as NetCDF Opera-
tor (http://nco.sourceforge.net), NCAR Command Language
(http://www.ncl.ucar.edu), Python (https://www.python.org),
and Climate Data Operators (https://www.unidata.ucar.edu/
software/netcdf/workshops/most-recent/third_party/CDO.
html). According to regulations of CMIP6, the data collection
should  follow  the  Data  Citation  Guidelines  (http://bit.ly/
2gBCuqM) and be sure to include the version number. Indi-
viduals  using  the  data  must  abide  by  terms  of  use  for
CMIP6 data (https://pcmdi.llnl.gov/CMIP6/TermsOfUse).
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