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Abstract We analyze the carbon-climate feedback in eight Earth System Models from phase 5 of
the Coupled Model Intercomparison Project (CMIP5). We focus on tropical land carbon change and find
decreases (!31.02 to !169.32 GtC K!1) indicating tropical ecosystems will release carbon as temperature
warms, thus contributing to a positive feedback identified in earlier studies. We further investigate the
relationship between tropical land carbon change and sensitivity of historical atmospheric CO2 growth rate
to tropical temperature variability and find aweak linear relationship. This sensitivity formostmodels is stronger
than observed. We further use this “emergent constraint” to constrain uncertainties in model-projected
future carbon-climate changes and find little effect in narrowing themodel spread, but themean sensitivity is
slightly smaller. This contrasts with earlier Coupled Carbon Cycle Climate Model Intercomparison Project
results, highlighting the challenge in constraining future projections by modern observations and the necessity
for evaluating such relationships continuously.

1. Introduction

The terrestrial ecosystem will exert a positive feedback effect on future global warming [Cox et al., 2000;
Dufresne et al., 2002; Zeng et al., 2004; Friedlingstein et al., 2006]. The land carbon sink will be affected by the
elevated atmospheric CO2 concentration and the changes in temperature and other climate elements.
Friedlingstein et al. [2006] found that carbon-climate feedback is positive in all the 11 models of the Coupled
Carbon Cycle Climate Model Intercomparison Project (C4MIP), albeit with a large spread. This feedback is
largely attributed to the changes in photosynthesis, respiration, and demographic processes that influence
the carbon residence time in vegetation [Friend et al., 2014], but the relative roles of different processes vary
greatly from model to model. One major factor is the sensitivity of land carbon to temperature increase
[Booth et al., 2012]. The majority of the coupled carbon cycle models in C4MIP simulate a reduction of land
carbon sequestration over the tropics [Friedlingstein et al., 2006]. Cox et al. [2004] projected the Amazonian
forest dieback for the 21st century, induced by warming and drought. However, recent simulations indicated
much lower risk of dieback from the Amazonian rainforests [Huntingford et al., 2013], but increased tree
mortality in response to severe drought in 2005 and 2010 is occurring [Marengo et al., 2008, 2011; Zeng et al.,
2008; Phillips et al., 2009]. In the most recent phase 5 of the Coupled Model Intercomparison Project (CMIP5),
the level of uncertainty in the carbon cycle appears not to have been reduced [Friedlingstein et al., 2013; Shao
et al., 2013; Hoffman et al., 2014]. Thus, it is critically important to use modern and past observations to
constrain the carbon-climate uncertainty [Cox et al., 2013; Hoffman et al., 2014].

In an elegant statistical analysis, Cox et al. [2013] used the observed historical sensitivity of the atmospheric
CO2 growth rate to tropical temperature variability [Bacastow, 1976] to constrain the uncertainty of the
tropical land climate impact. Using results from six fully coupled carbon-climate models from the C4MIP
project, they found a remarkable linear relationship between the simulated historical sensitivity of the CO2

growth rate and the sensitivity of tropical land carbon sequestration to tropical temperature warming. They
were then able to use this linear relationship in a Bayesian framework to narrow the uncertainty range in
these models’ future projections.

Here we apply a similar approach to investigate the sensitivity of tropical land carbon sequestration to
tropical temperature warming and the sensitivity of the historical atmospheric CO2 growth rate to tropical
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temperature interannual variability (IAV) but through using eight Earth System Models (ESMs) involved in
CMIP5. The model simulations we use are the emissions-driven fully coupled and ideal concentration-driven
biogeochemical coupled runs. Our main goal is to test to what degree modern observations of CO2

variability can be used to constrain future carbon-climate feedback, in particular how such capability
depends on model choice.

2. Models and Methodology
2.1. ESMs in CMIP5

We use eight available ESMs in CMIP5 to make this analysis. The components of the carbon cycle and their
resolutions are summarized in Table S1 in the supporting information. The names of the ESMs are as
follows: (1) bcc-csm1.1 (Beijing Climate Center) [Wu et al., 2013]; (2) CanESM2 (Canadian Center for Climate
Modeling and Analysis) [Arora et al., 2011]; (3) CESM1-BGC (National Center for Atmospheric Research)
[Hurrell et al., 2013; Keppel-Aleks et al., 2013]; (4) FGOALS-s2 (Institute of Atmospheric Physics) [Bao et al.,
2013; Wang et al., 2013]; (5) GFDL-ESM2M (NOAA Geophysical Fluid Dynamics Laboratory) [Dunne et al.,
2013]; (6) HadGEM2-ES (Met Office Hadley Center) [Collins et al., 2011; Jones et al., 2011]; (7) MPI-ESM-LR
(Max Planck Institute for Meteorology) [Ilyina et al., 2013]; and (8) NorESM1-ME (Norwegian Climate Center)
[Tjiputra et al., 2012].

2.2. Approaches for the Carbon-Climate and Carbon Concentration Feedback Parameters

Following previous studies [Friedlingstein et al., 2003, 2006], a linear assumption is made to infer the
dependences of tropical land carbon change on the change of atmospheric CO2 and of tropical mean
temperature. We obtain the carbon concentration and carbon-climate feedback parameters based on two
experiments in CMIP5 [Taylor et al., 2012]: (1) the fully coupled run forced by prescribed anthropogenic
emissions with historical CO2 emissions of fossil fuels [Andres et al., 2011] and land use change [Houghton,
2010] as well as 21st century emissions for the representative concentration pathway 8.5 (RCP8.5) [Riahi
et al., 2007] and (2) the biogeochemical coupled run with the carbon cycle forced by CO2 at a rate of a 1%
increase per year from the preindustrial value (284.725 ppm) to 4 times that value, but the radiation code
sees a time-invariant preindustrial CO2 concentration. The formulae are written as follows:

1. Fully coupled run

δH" ¼ βδCO"
2 þ γδT"; (1)

2. Biogeochemical coupled run

δHþ ¼ βδCOþ
2 þ γδTþ; (2)

where δH* and δH+ denote the changes of the tropical land carbon storage (30°S–30°N) in the fully coupled run
from 1960 to 2099 and the biogeochemical coupled run frommodel year 1 to 140, respectively.δCO"

2 andδCO
þ
2

denote the changes of the atmospheric CO2 concentration, and δT* and δH+ represent the changes of the
tropical mean temperature in the two runs. Because there is no radiative forcing in the biogeochemical coupled
run, the temperature change (δH+) is small but not 0. This small temperature change can be attributed to the
change of vegetation structure and distribution along with the atmospheric CO2 increase. β and γ are the
sensitivities of tropical land carbon sequestration to atmospheric CO2 effects and to climate change,
respectively. Assuming they hold constant in the two kinds of coupled runs, we can deduce their values.

2.3. Anomalies of the Atmospheric CO2 Growth Rate and Tropical Mean Temperature

We take the combination of the globally averagedmarine surface annual mean CO2 data fromNational Oceanic
and Atmospheric Administration (NOAA)/Earth System Research Laboratory (www.esrl.noaa.gov/gmd/ccgg/
trends/) for 1980 to 2010 and the historical data sets from the RCP scenarios [Meinshausen et al., 2011] for 1960
to 1979 as the observed CO2 concentration. The atmospheric CO2 growth rates of the observation and ESM
simulations are calculated as

dCO2

dt

!!!!
n
¼ CO2 nð Þ ! CO2 n! 1ð Þ; (3)

where n denotes the nth year.
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Figure 1. Changes of tropical near-surface air temperature, tropical land carbon pools (30°S–30°N), and atmospheric CO2
concentration, simulated by eight Earth SystemModels (ESMs) participating in CMIP5, in the (a, c, e) fully coupled and (b, d, f)
biogeochemical coupled runs, respectively. The carbon cycle in the biogeochemical run is forced by the atmospheric CO2
concentration at a rate of 1% increase per year from the preindustrial value (284.725ppm) to 4 times the initial concentration,
so Figure 1d only presents one curve demonstrating the ideal change of the CO2 concentration. And the black bar in Figure 1d
shows the mean CO2 concentration change in C4MIP models for the uncoupled run from 1960 to 2099 [Cox et al., 2013]. The
GFDL-ESM2Mmodel increases its CO2 only to the double (70 years) according to its experimental design, and we take the first
70 years to make the analysis (blue curve in Figures 1b and 1f). In all but Figure 1d, the black curve shows the median value.

Geophysical Research Letters 10.1002/2014GL060004

WANG ET AL. ©2014. American Geophysical Union. All Rights Reserved. 3



The observed tropical mean temperature is derived from the HadCRUT3 data set [Brohan et al., 2006]. Annual
mean temperature is calculated following Cox et al. [2013]:

T nð Þ ¼ T nð Þ þ T n! 1ð Þ
2

; (4)

whereT nð Þdenotes the tropical mean temperature centered on the beginning of the nth year. The anomalies
of atmospheric CO2 growth rate and tropical mean temperature are calculated as the residuals of original
variations of the time series from the results of the 11 year running mean.

3. Results
3.1. Tropical Land Carbon Concentration and Carbon-Climate Feedback Parameters

In order to obtain the tropical land carbon concentration and carbon-climate feedback parameters, we
investigate the changes of tropical temperature, tropical land carbon storage, and atmospheric CO2

concentration in the eight CMIP5 ESMs (Figure 1). This set of models contains largely the same but not
identical models as in some other recent CMIP5 model analyses [Arora et al., 2013; Friedlingstein et al., 2013],
due to limitation in model availability for each analysis. The left column shows the results from the fully
coupled run and the right column from the biogeochemical coupled run. The simulated atmospheric CO2

concentration in the emissions-driven fully coupled run (Figure 1c) shows an accelerated increase, mainly
caused by anthropogenic emissions (RCP8.5) [Meinshausen et al., 2011] and partially caused by the slowdown
of terrestrial carbon uptake, even as a carbon source (Figure 1e). The uncertainty across the ESMs, ranging
between 584.95 ppm (MPI-ESM-LR) and 750.19 ppm (CESM1-BGC) (difference between the average of the
last 10 years and that of first 10 years; Table 1), results from the various responses of the land and ocean
carbon cycle components in each model. The radiative forcing induced by the atmospheric CO2

concentration will contribute to global warming. The change in tropical temperature (Figure 1a) also shows
an accelerated increase, with the range from 3.37 K (GFDL-ESM2M) to 5.27 K (CanESM2). The discrepancy
between the atmospheric CO2 and tropical temperature increase indicates the different climate sensitivities
in the ESMs. Tropical terrestrial carbon storage will increase due to strong vegetation photosynthesis via the
CO2 fertilization effect under the high CO2 concentration and will decrease because of reduced primary
productivity owing to the warming temperature as well as regional droughts and enhanced respiration
mainly caused by the warming temperature [Cox et al., 2000; Friedlingstein et al., 2006; Zhao and Running,
2010]. Figure 1e shows the variations of tropical land carbon storage in ESMs with the increase in temperature
and atmospheric CO2 concentration. Discrepancies occur among the eight ESMs, in that half of them serve
as a carbon source in the late 21st century, while the other half remain as a carbon sink. Up to 2099, the
strongest release from tropical land carbon storage is !137.32 GtC (FGOALS-s2) and the strongest uptake is
255.22 GtC (bcc-csm1.1).

In the biogeochemical coupled run, the carbon cycle is forced by CO2 at a rate of a 1% increase per year from
the preindustrial value to 4 times that value (Figure 1d) in all but GFDL-ESM2M (in which it increases to double
the CO2 concentration). The atmospheric CO2 change (850.54 ppm) is stronger than the mean change

Table 1. Changes of Physical Variables in the Climate-Carbon Cycle Projectionsa

Model

Biogeochemical Coupled Run Fully Coupled Run

β (GtC ppm!1) γ (GtC K!1)δH+(GtC) δT+(K) δCO2
+(ppm) δH*(GtC) δT*(K) δCO2*(ppm)

bcc-csm1.1 576.14 0.17 850.54 255.22 3.55 594.93 0.69 !43.07
CanESM2 539.9 0.18 850.54 12.09 5.27 669.43 0.65 !80.50
CESM1-BGC 134.34 0.24 850.54 !112.8 4.03 750.19 0.18 !60.57
FGOALS-s2 37.48 !0.09 850.54 !137.32 5.26 633.95 0.04 !31.02
GFDL-ESM2M 265.76 0.09 288.08 7.43 3.37 592.62 0.98 !169.32
HadGEM2-ES 533.29 0.79 850.54 72.47 4.52 607.8 0.70 !78.02
MPI-ESM-LR 662.43 0.05 850.54 !9.78 4.41 584.95 0.79 !106.35
NorESM1-ME 123.85 0.13 850.54 !126.23 3.67 717.7 0.16 !64.81

aChanges of the tropical land carbon pools (δH), tropical near-surface air temperatures (δT) (30°S–30°N), and atmospheric CO2 concentrations, produced by
Earth System Models (ESMs) participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5), and corresponding sensitivities of tropical land
carbon sequestrations to the direct CO2 effect and to climate warming.
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(448.5 ppm) in C4MIP for the uncoupled runs from 1960 to 2099 [Cox et al., 2013]. But the radiation code sees
a constant value (284.725 ppm). In the absence of radiative forcing, the tropical temperature shows only a
slight increase (Figure 1b), likely due to changes in vegetation structure (leaf area index, vegetation height
etc.) and distribution. All models agree that tropical land (Figure 1f) sequesters carbon due to the CO2

fertilization effect alone. However, the strength of the sequestration is very different, ranging from 37.48 GtC
(FGOALS-s2) to 662.43 GtC (MPI-ESM-LR). Nevertheless, the accumulation of tropical carbon storage in the
biogeochemical coupled run is significantly stronger than in the fully coupled run. This further suggests the
carbon-climate feedback will inhibit the carbon uptake over the tropical land.

We can obtain the sensitivities of the tropical terrestrial carbon concentration and carbon-climate feedbacks
(Table 1 and Figure S1) according to equations (1) and (2). The sensitivities of the carbon concentration
feedback (β GtC ppm!1) across the ESMs are positive as a result of the enhancement of primary production
under CO2 fertilization, whereas the sensitivities of the carbon-climate feedback (γ GtC K!1) are negative due
to the suppressed primary production and increased respiration. Both sensitivities show a large spread.
FGOALS-s2 generates the weakest sensitivity of carbon concentration feedback (0.04 GtC ppm!1), while
CESM1-BGC and NorESM1-ME have similar magnitudes (0.18 and 0.16 GtC ppm!1) because they both adopt

Figure 2. (a–i) The sensitivity of the anomaly in the atmospheric CO2 growth rate (dCO2/dt) to the anomaly in tropical near-surface air temperature from 1960 to
2010. The post-volcano years are excluded due to the strong climate perturbations caused by volcanic eruptions (blue dots). The symbol (*) appearing in the
coefficient of the determination (R2) indicates the regression is not significant (p> 0.05).
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the community land model version 4 [Lawrence et al., 2011] as the land component that includes the carbon-
nitrogen interactions. The nitrogen limitation [Thornton et al., 2007] can reduce the CO2 fertilization effect.
The sensitivities of carbon concentration feedback in the other ESMs are stronger. On the other hand, the
sensitivities of carbon-climate feedback also vary among the ESMs, ranging from !31.02 GtC K!1 (FGOALS-s2)
to !169.32 GtCK!1 (GFDL-ESM2M).

3.2. Interannual Response of Atmospheric CO2 Growth Rate to Tropical Temperature Variability

The atmospheric CO2 growth rate shows an unambiguous IAV and a close relationship with tropical
temperature variability [Bacastow, 1976]. This relationship in the observation and ESMs is presented in
Figure 2, with post-volcano years excluded because the climate perturbations induced by volcanic eruptions
can alter the IAV of the atmospheric CO2 growth rate through the diffuse light effect [Mercado et al., 2009].
The standard deviations of anomalies in the atmospheric CO2 growth rate and tropical temperature are 0.11 K
and 0.80 GtC yr!1 (Table 2), with the sensitivity being 4.92 ± 0.95 GtC yr!1 K!1 for the observation (Figure 2a).
The IAVs of tropical temperature across the ESMs are comparable to the observation, whereas large
uncertainties, from 0.6 GtC yr!1 (NorESM1-ME) to 3.37 GtC yr!1 (GFDL-ESM2M), occur in the variabilities of
the atmospheric CO2 growth rate (Table 2). Figures 2b–2i show that the sensitivity between the anomaly
in the atmospheric CO2 growth rate and that in tropical temperature varies across the ESMs. In all but
two, the sensitivities simulated by the ESMs are higher than in the observation, with the maximum value
(16.53 GtC yr!1 K!1) in GFDL-ESM2M. These higher sensitivities account for the stronger IAV of the
atmospheric CO2 growth rate in the majority of the ESMs. The sensitivity generated by CESM1-BGC is
statistically insignificant, with a value of 0.30 ± 1.21 GtC yr!1 K!1, owing to the insignificant dependence
of the air-land carbon flux on the tropical mean temperature variability in this model (figure is omitted).
The sensitivity in NorESM1-ME also turns out to be relatively weaker (1.97 ± 0.80 GtC yr!1 K!1).

3.3. Relationship Between Climate Impact and Sensitivity of the CO2 Growth Rate

Based on analyses in six general circulation models participating in C4MIP, Cox et al. [2013] found a
strong linear relationship between the sensitivity of the atmospheric CO2 growth rate and tropical land
carbon-climate feedback parameters, reproduced in Figure 3c. With this model-derived linear relationship,
they used the observed sensitivity of the atmospheric CO2 growth rate to constrain the modeled
carbon-climate feedback parameters through the conditional probability approach (see Appendix A).
The constraint sharpens the probability density function (PDF) and also, importantly, shifts the mean to a
lower value (Figure 3d).

Our analysis with the eight CMIP5 ESMs is shown in Figures 3a and 3b. There is a linear relationship, but it is
weak; in fact, it is not statistically significant (p=0.25). As a result, our posterior PDF has nearly the same large
spread as the prior PDF. Interestingly, the mean sensitivity shifts to a lower value (Figure 3b), in the same
direction of the C4MIP results, albeit much smaller. The differing statistical responses to the sensitivity of
atmospheric CO2 growth rate and tropical land climate impact between C4MIP models and CMIP5 models
indicate that the uncertainty in the carbon-climate sensitivity cannot be reduced in the latter set of models
using the emergent constraint approach applied by Cox et al. [2013] for the former set of models.

Table 2. The Interannual Variability From 1960 to 2010a

Model σ(T) (K) σ(dCO2/dt) (GtC yr
!1) IAV Sensitivity (GtC yr!1 k!1)

bcc-csm1.1 0.09 1.75 12.83± 2.65
CanESM2 0.14 1.88 10.08± 1.46
CESM1-BGC 0.11 0.82 0.30± 1.21
FGOALS-s2 0.11 0.81 6.22± 0.56
GFDL-ESM2M 0.16 3.37 16.53± 2.34
HadGEM2-ES 0.15 1.37 7.20± 1.02
MPI-ESM-LR 0.18 1.25 5.32± 0.80
NorESM1-ME 0.12 0.6 1.97± 0.80
Obs 0.11 0.8 4.92± 0.95

aThe sensitivity of the atmospheric CO2 annual growth rate to the tropical near-surface air temperature variability
from 1960 to 2010. All the calculations exclude post-volcano years (1963, 1964, 1982, 1983, 1992, and 1993) owing to
the climate perturbations caused by volcanic eruptions. The second and third columns are the standard deviations of
the anomalies in the tropical near-surface air temperature and atmospheric CO2 annual growth rate, respectively.
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4. Discussion

The magnitude of the carbon-climate or carbon concentration feedback parameters varies with the state of
the system, the formulism adopted, the scenario forced, and the specifications of CO2 from anthropogenic
emissions or as atmospheric concentrations [ Boer and Arora, 2012; Arora et al., 2013]. Besides the fully coupled run,
the carbon-climate parameter in Cox et al. [2013] is determined by the uncoupled run inwhich the land and ocean
carbon cycles are insensitive to the climate change induced by the Special Report on Emissions Scenarios (SRES) A2
scenario [Nakicenovic et al., 2000] of anthropogenic CO2 emissions. This uncoupled run is totally different from
the biogeochemical run used here to obtain the carbon-climate parameter in the CMIP5 ESMs. Differences in these
two runs are as follows: (1) emissions-driven uncoupled run in C4MIP and concentration-driven biogeochemical
run in CMIP5 and (2) the SRES A2 scenario of anthropogenic CO2 emission in C4MIP and ideally an increase at a rate
of 1% atmospheric CO2 concentration in CMIP5 (Figure 1d). The forced scenarios and specifications of CO2 from
emissions or prescribed atmospheric concentrations will exert large impacts on the magnitude of the carbon-
climate feedback parameter. Besides these differences in the experimental designs, there have to be other
potential differences as well, including themodels considered, how land use is accounted for, parameterizations
across model versions, and so on. These differences may partly explain why the constraint does not emerge
in CMIP5 ESMs, while it is significant for the C4MIP models. Under the limitations in the CMIP5 experimental
designs [Taylor et al., 2012], we cannot test the “emergent constraint” of Cox et al. [2013] more precisely.

Figure 3. The relationship between the climate impact on tropical land carbon and the sensitivity of the CO2 growth rate and
the emergent constraint on the probability density function (PDF) of the climate impact. (a) Results in the CMIP5 ESMs with an
insignificant linear relationship (p=0.25); (c) Coupled Carbon Cycle Climate Model Intercomparison Project (C4MIP) results
with an elegant linear relationship (p< 0.001), as shown by Cox et al. [2013]. The error bars show the uncertainties in the
sensitivity of the CO2 growth rate, and the gray shaded columns present the observation constraint (4.92±0.95 GtCyr!1 K!1).
(b, d) A Gaussian distribution of the original climate impact parameters (red solid line) on the basis of an assumption that
all the models’ results are equally correct (excluding CESM1-BGC owing to the insignificant sensitivity of the CO2 growth
rate in CMIP5); the black solid line denotes the constrained PDF via the relationship between the climate impact and
sensitivity of the CO2 growth rate across the models.
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5. Concluding Remarks

In summary, the climate sensitivities of tropical land carbon in CMIP5 ESMs are all negative, suggesting that
the temperature warming alone will make tropical land release carbon into the atmosphere. The majority of
the sensitivities of the atmospheric CO2 growth rate to tropical mean temperature are stronger in the ESMs
than in the modern observations. Unlike the earlier C4MIP models, there is only a weak linear relationship
(p= 0.25). As a result, the uncertainty of climate impact in the CMIP5 ESMs can barely be reduced using the
constraining approach of Cox et al. [2013]. Besides such model dependence, physical considerations also
suggest that some processes involving longer-term adjustment in, for example, photosynthesis, nitrogen
limitation, soil turnover, and tree demographic responses may not manifest themselves on interannual time
scales [Zeng et al., 2004; Matthews et al., 2005; Hungate et al., 2013; Friend et al., 2014]. Reversely, these
processes make the carbon cycle biases persist on decadal time scales [Hoffman et al., 2014]. Therefore, it
remains a major challenge to use modern observations to constrain future carbon cycle responses and
interaction with climate. Scientifically, these emergent constraints must be continuously evaluated to
determine how well they hold as results from new model intercomparison experiments become available.

Appendix A: Linear Least Squares Fitting and the PDF Method for Carbon-Climate
Impact (γ)
The linear least squares fitting is the simplest andmost commonly applied technique. For a linear fit, yi=a+bxi+ εi,
where a and b denote the intercept with the y axis and the gradient, respectively. The xi and yi are the two
series. The εi denotes the error between the actual vertical point, yi, and the fitting point, (εi ¼ yi ! ŷi). Let

SSxx ¼
Xn

i¼1

xi ! xð Þ;

SSyy ¼
Xn

i¼1

yi ! yð Þ;

SSxy ¼
Xn

i¼1

xi ! xð Þ yi ! yð Þ:

9
>>>>>>>>>=

>>>>>>>>>;

;

where x and y denote the mean of the time series.

According to the maximum likelihood estimation, the regression coefficient b̂¼ SSxy=SSxx , and â is given in

terms of â ¼ y ! b̂x. We define s2 as an estimator for the variance in εi,

s2 ¼
Xn

i¼1

ε2i
n! 2

¼
SSyy ! SS2xy =SSxx

n! 2
:

The standard error for b̂ is given as σb ¼ s=
ffiffiffiffiffiffiffiffi
SSxx

p
, which defines a Gaussian probability density for b̂:

P b̂
# $

∼ N b; σ 2
b

% &
:

The prediction error at x! xi is given as

P Ŷ! f xið Þ
% &

∼ N 0; 1þ 1
n
þ xi ! xð Þ2

SSxx

" #

s2
 !

:

Let σ2
f ¼ 1þ 1

n þ
x!xð Þ
SSxx

h i
s2; the probability density of Ŷ given x is

P Ŷ xj
% &

∼ N f xð Þ; σ2
f

% &
:

Because of the emergent significant linear relationship between the carbon-climate feedback parameter of tropical
land carbon sequestrations (γLT) and the sensitivity of historical atmospheric CO2 growth rate to tropical
temperature variability γCO2

% &
in Cox et al. [2013], we can deduce the probability density of γLT given γCO2

, namely,
P γLT γCO2

Þ
!!%

. Additionally, the linear relationship between the observed annual anomalies in the atmospheric CO2

growth rate and the tropicalmean temperature provides the observation-based probability density ofγCO2
, and so

P γ LTð Þ ¼ ∫
∞

!∞
P γ LT γCO2

ÞP γCO2

% &
dγCO2

:
!!%

Geophysical Research Letters 10.1002/2014GL060004

WANG ET AL. ©2014. American Geophysical Union. All Rights Reserved. 8



References
Andres, R. J., J. S. Gregg, L. Losey, G. Marland, and T. A. Boden (2011), Monthly, global emissions of carbon dioxide from fossil fuel consumption,

Tellus B, 63(3), 309–327, doi:10.1111/j.1600-0889.2011.00530.x.
Arora, V. K., J. F. Scinocca, G. J. Boer, J. R. Christian, K. L. Denman, G. M. Flato, V. V. Kharin, W. G. Lee, and W. J. Merryfield (2011), Carbon

emission limits required to satisfy future representative concentration pathways of greenhouse gases, Geophys. Res. Lett., 38, L05805,
doi:10.1029/2010GL046270.

Arora, V. K., et al. (2013), Carbon-concentration and carbon–climate deedbacks in CMIP5 Earth System Models, J. Clim., 26(15), 5289–5314,
doi:10.1175/jcli-d-12-00494.1.

Bacastow, R. B. (1976), Modulation of atmospheric carbon dioxide by the Southern Oscillation, Nature, 261, 116–118, doi:10.1038/261116a0.
Bao, Q., et al. (2013), The Flexible Global Ocean-Atmosphere-Land system model, Spectral Version 2: FGOALS-s2, Adv. Atmos. Sci., 30(3),

561–576, doi:10.1007/S00376-012-2113-9.
Boer, G. J., and V. K. Arora (2012), Feedbacks in emission-driven and concentration-driven global carbon budgets, J. Clim., 26(10), 3326–3341,

doi:10.1175/JCLI-D-12-00365.1.
Booth, B. B. B., C. D. Jones, M. Collins, I. J. Totterdell, P. M. Cox, S. Sitch, C. Huntingford, R. A. Betts, G. R. Harris, and J. Lloyd (2012), High

sensitivity of future global warming to land carbon cycle processes, Environ. Res. Lett., 7(2), 024002, doi:10.1088/1748-9326/7/2/024002.
Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones (2006), Uncertainty estimates in regional and global observed temperature

changes: A new data set from 1850, J. Geophys. Res., 111, D12106, doi:10.1029/2005JD006548.
Collins, W. J., et al. (2011), Development and evaluation of an Earth-System model-HadGEM2, Geosci. Model Dev., 4(4), 1051–1075, doi:10.5194/

Gmd-4-1051-2011.
Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell (2000), Acceleration of global warming due to carbon-cycle feedbacks in a

coupled climate model, Nature, 408, 184–187.
Cox, P. M., R. A. Betts, M. Collins, P. P. Harris, C. Huntingford, and C. D. Jones (2004), Amazonian forest dieback under climate-carbon cycle

projections for the 21st century, Theor. Appl. Climatol., 78(1-3), 137–156, doi:10.1007/s00704-004-0049-4.
Cox, P. M., D. Pearson, B. B. Booth, P. Friedlingstein, C. Huntingford, C. D. Jones, and C. M. Luke (2013), Sensitivity of tropical carbon to climate

change constrained by carbon dioxide variability, Nature, 494(7437), 341–344, doi:10.1038/nature11882.
Dufresne, J. L., P. Friedlingstein, M. Berthelot, L. Bopp, P. Ciais, L. Fairhead, H. Le Treut, and P. Monfray (2002), On the magnitude of positive

feedback between future climate change and the carbon cycle, Geophys. Res. Lett., 29(10), 1405, doi:10.1029/2001GL013777.
Dunne, J. P., et al. (2013), GFDL’s ESM2 Global Coupled Climate-Carbon Earth System Models. Part II: Carbon system formulation and baseline

simulation characteristics, J. Clim., 26(7), 2247–2267, doi:10.1175/Jcli-D-12-00150.1.
Friedlingstein, P., J. L. Dufresne, P. M. Cox, and P. Rayner (2003), How positive is the feedback between climate change and the carbon cycle?,

Tellus, 55B, 692–700.
Friedlingstein, P., et al. (2006), Climate-carbon cycle feedback analysis: Results from the C4MIPmodel intercomparison, J. Clim., 19(14), 3337–3353,

doi:10.1175/jcli3800.1.
Friedlingstein, P., M. Meinshausen, V. K. Arora, C. D. Jones, A. Anav, S. K. Liddicoat, and R. Knutti (2013), Uncertainties in CMIP5 climate

projections due to carbon cycle feedbacks, J. Clim., 27, 511–526, doi:10.1175/jcli-d-12-00579.1.
Friend, A. D., et al. (2014), Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric

CO2, Proc. Natl. Acad. Sci. U.S.A., 111(9), 3280–3285, doi:10.1073/pnas.1222477110.
Hoffman, F. M., et al. (2014), Causes and implications of persistent atmospheric carbon dioxide biases in Earth SystemModels, J. Geophys. Res.

Biogeosci., 119, 141–162, doi:10.1002/2013JG002381.
Houghton, R. A. (2010), How well do we know the flux of CO2 from land-use change?, Tellus Ser. B Chem. Phys. Meteorol., 62(5), 337–351,

doi:10.1111/J.1600-0889.2010.00473.X.
Hungate, B. A., P. Dijkstra, Z. T. Wu, B. D. Duval, F. P. Day, D. W. Johnson, J. P. Megonigal, A. L. P. Brown, and J. L. Garland (2013), Cumulative

response of ecosystem carbon and nitrogen stocks to chronic CO2 exposure in a subtropical oak woodland, New Phytol., 200(3), 753–766,
doi:10.1111/Nph.12333.

Huntingford, C., et al. (2013), Simulated resilience of tropical rainforests to CO2-induced climate change, Nat. Geosci., 6, 268–273,
doi:10.1038/ngeo1741.

Hurrell, J. W., et al. (2013), The Community Earth SystemModel: A framework for collaborative research, Bull. Am. Meteorol. Soc., 94(9), 1339–1360,
doi:10.1175/Bams-D-12-00121.1.

Ilyina, T., K. D. Six, J. Segschneider, E. Maier-Reimer, H. M. Li, and I. Nunez-Riboni (2013), Global ocean biogeochemistry model HAMOCC:
Model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations,
J. Adv. Model Earth Syst., 5(2), 287–315, doi:10.1029/2012MS000178.

Jones, C. D., et al. (2011), The HadGEM2-ES implementation of CMIP5 centennial simulations, Geosci. Model Dev., 4(3), 543–570, doi:10.5194/
Gmd-4-543-2011.

Keppel-Aleks, G., et al. (2013), Atmospheric carbon dioxide variability in the Community Earth SystemModel: Evaluation and transient dynamics
during the twentieth and twenty-first centuries, J. Clim., 26(13), 4447–4475, doi:10.1175/jcli-d-12-00589.1.

Lawrence, D. M., et al. (2011), Parameterization improvements and functional and structural advances in version 4 of the Community LandModel,
J. Adv. Model Earth Syst., 3, M03001, doi:10.1029/2011MS000045.

Marengo, J. A., C. A. Nobre, J. Tomasella, M. D. Oyama, G. Sampaio de Oliveira, R. de Oliveira, H. Camargo, L. M. Alves, and I. F. Brown (2008),
The drought of Amazonia in 2005, J. Clim., 21(3), 495–516, doi:10.1175/2007jcli1600.1.

Marengo, J. A., J. Tomasella, L. M. Alves, W. R. Soares, and D. A. Rodriguez (2011), The drought of 2010 in the context of historical droughts in
the Amazon region, Geophys. Res. Lett., 38, L12703, doi:10.1029/2011GL047436.

Matthews, H. D., M. Eby, A. J. Weaver, and B. J. Hawkins (2005), Primary productivity control of simulated carbon cycle-climate feedbacks,
Geophys. Res. Lett., 32, L14708, doi:10.1029/2005GL022941.

Meinshausen, M., et al. (2011), The RCP greenhouse gas concentrations and their extensions from 1765 to 2300, Clim. Change, 109(1–2),
213–241, doi:10.1007/S10584-011-0156-Z.

Mercado, L. M., N. Bellouin, S. Sitch, O. Boucher, C. Huntingford, M. Wild, and P. M. Cox (2009), Impact of changes in diffuse radiation on the
global land carbon sink, Nature, 458(7241), 1014–U1087, doi:10.1038/Nature07949.

Nakicenovic, N., et al. (2000), Emissions scenarios: Summary for policymakers, Spec. Report (Intergovernmental Panel on Climate Change, 2000).
Phillips, O. L., et al. (2009), Drought sensitivity of the Amazon rainforest, Science, 323(5919), 1344–1347, doi:10.1126/Science.1164033.
Riahi, K., A. Grübler, and N. Nakicenovic (2007), Scenarios of long-term socio-economic and environmental development under climate

stabilization, Technol. Forecasting Social Change, 74(7), 887–935, doi:10.1016/j.techfore.2006.05.026.

Geophysical Research Letters 10.1002/2014GL060004

WANG ET AL. ©2014. American Geophysical Union. All Rights Reserved. 9

Acknowledgments
The data of the ESMs in CMIP5 are
supported by the U.S. Department of
Energy’s Program for Climate Model
Diagnosis and Intercomparison. The
global marine surface annual mean CO2

data are from the NOAA website, and
the CO2 from the Representative
Concentration Pathway are from
Potsdam Institute for Climate Impact
Research. The tropical surface tempera-
tures are available at the CRU/Met
Office. We are grateful for the thorough
review by two anonymous reviewers.
This work was supported by the Chinese
Academy of Sciences (XDA05110303
and XDA11010402), the “973” projects
(2010CB950404 and 2013CB955803), NSFC
(Grant Nos. 91337110 and 41023002).

The Editor thanks two anonymous
reviewers for their assistance in
evaluating this paper.

http://dx.doi.org/10.1111/j.1600&hyphen;0889.2011.00530.x
http://dx.doi.org/10.1029/2010GL046270
http://dx.doi.org/10.1175/jcli&hyphen;d&hyphen;12&hyphen;00494.1
http://dx.doi.org/10.1038/261116a0
http://dx.doi.org/10.1007/S00376&hyphen;012&hyphen;2113&hyphen;9
http://dx.doi.org/10.1175/JCLI&hyphen;D&hyphen;12&hyphen;00365.1
http://dx.doi.org/10.1088/1748&hyphen;9326/7/2/024002
http://dx.doi.org/10.1029/2005JD006548
http://dx.doi.org/10.5194/Gmd&hyphen;4&hyphen;1051&hyphen;2011
http://dx.doi.org/10.5194/Gmd&hyphen;4&hyphen;1051&hyphen;2011
http://dx.doi.org/10.1007/s00704&hyphen;004&hyphen;0049&hyphen;4
http://dx.doi.org/10.1038/nature11882
http://dx.doi.org/10.1029/2001GL013777
http://dx.doi.org/10.1175/Jcli&hyphen;D&hyphen;12&hyphen;00150.1
http://dx.doi.org/10.1175/jcli3800.1
http://dx.doi.org/10.1175/jcli&hyphen;d&hyphen;12&hyphen;00579.1
http://dx.doi.org/10.1073/pnas.1222477110
http://dx.doi.org/10.1002/2013JG002381
http://dx.doi.org/10.1111/J.1600&hyphen;0889.2010.00473.X
http://dx.doi.org/10.1111/Nph.12333
http://dx.doi.org/10.1038/ngeo1741
http://dx.doi.org/10.1175/Bams&hyphen;D&hyphen;12&hyphen;00121.1
http://dx.doi.org/10.1029/2012MS000178
http://dx.doi.org/10.5194/Gmd&hyphen;4&hyphen;543&hyphen;2011
http://dx.doi.org/10.5194/Gmd&hyphen;4&hyphen;543&hyphen;2011
http://dx.doi.org/10.1175/jcli&hyphen;d&hyphen;12&hyphen;00589.1
http://dx.doi.org/10.1029/2011MS000045
http://dx.doi.org/10.1175/2007jcli1600.1
http://dx.doi.org/10.1029/2011GL047436
http://dx.doi.org/10.1029/2005GL022941
http://dx.doi.org/10.1007/S10584&hyphen;011&hyphen;0156&hyphen;Z
http://dx.doi.org/10.1038/Nature07949
http://dx.doi.org/10.1126/Science.1164033
http://dx.doi.org/10.1016/j.techfore.2006.05.026


Shao, P., X. B. Zeng, K. Sakaguchi, R. K. Monson, and X. D. Zeng (2013), Terrestrial carbon cycle: Climate relations in eight CMIP5 Earth System
Models, J. Clim., 26(22), 8744–8764, doi:10.1175/JCLI-D-12-00831.1.

Taylor, K. E., R. J. Stouffer, and G. A. Meehl (2012), An overview of CMIP5 and the experiment design, Bull. Am. Meteorol. Soc., 93(4), 485–498,
doi:10.1175/Bams-D-11-00094.1.

Thornton, P. E., J. F. Lamarque, N. A. Rosenbloom, and N. M. Mahowald (2007), Influence of carbon-nitrogen cycle coupling on land model
response to CO2 fertilization and climate variability, Global Biogeochem. Cycles, 21, Gb4018, doi:10.1029/2006GB002868.

Tjiputra, J. F., C. Roelandt, M. Bentsen, D. M. Lawrence, T. Lorentzen, J. Schwinger, Ø. Seland, and C. Heinze (2012), Evaluation of the carbon cycle
components in the Norwegian Earth System Model (NorESM), Geosci. Model Dev. Discuss., 5(4), 3035–3087, doi:10.5194/gmdd-5-3035-2012.

Wang, J., Q. Bao, N. Zeng, Y. M. Liu, G. X. Wu, and D. Y. Ji (2013), Earth System Model FGOALS-s2: Coupling a dynamic global vegetation and
terrestrial carbon model with the physical climate system model, Adv. Atmos. Sci., 30(6), 1549–1559, doi:10.1007/S00376-013-2169-1.

Wu, T. W., et al. (2013), Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century, J. Geophys
Res. Atmos., 118, 4326–4347, doi:10.1002/Jgrd.50320.

Zeng, N., H. F. Qian, E. Munoz, and R. Iacono (2004), How strong is carbon cycle-climate feedback under global warming?, Geophys. Res. Lett.,
31, L20203, doi:10.1029/2004GL020904.

Zeng, N., J.-H. Yoon, J. A. Marengo, A. Subramaniam, C. A. Nobre, A. Mariotti, and J. D. Neelin (2008), Causes and impacts of the 2005 Amazon
drought, Environ. Res. Lett., 3(1), 014002, doi:10.1088/1748-9326/3/1/014002.

Zhao, M., and S. W. Running (2010), Drought-induced reduction in global terrestrial net primary production from 2000 through 2009, Science,
329(5994), 940–943, doi:10.1126/science.1192666.

Geophysical Research Letters 10.1002/2014GL060004

WANG ET AL. ©2014. American Geophysical Union. All Rights Reserved. 10

http://dx.doi.org/10.1175/JCLI&hyphen;D&hyphen;12&hyphen;00831.1
http://dx.doi.org/10.1175/Bams&hyphen;D&hyphen;11&hyphen;00094.1
http://dx.doi.org/10.1029/2006GB002868
http://dx.doi.org/10.5194/gmdd&hyphen;5&hyphen;3035&hyphen;2012
http://dx.doi.org/10.1007/S00376&hyphen;013&hyphen;2169&hyphen;1
http://dx.doi.org/10.1002/Jgrd.50320
http://dx.doi.org/10.1029/2004GL020904
http://dx.doi.org/10.1088/1748&hyphen;9326/3/1/014002
http://dx.doi.org/10.1126/science.1192666

