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Three kinds of the widely-used cloudiness parameterizations are compared with data produced from the cloud-resolving model 
(CRM) simulations of the tropical cloud system. The investigated schemes include those based on relative humidity (RH), the 
semi-empirical scheme using cloud condensate as a predictor, and the statistical scheme based on probability distribution func-
tions (PDFs). Results show that all three schemes are successful in reproducing the timing of cloud generation, except for the 
RH-based scheme, in which low-level clouds are artificially simulated during cloudless days. In contrast, the low-level clouds 
are well simulated in the semi-empirical and PDF-based statistical schemes, both of which are close to the CRM explicit simu-
lations. In addition to the Gaussian PDF, two alternative PDFs are also explored to investigate the impact of different PDFs on 
cloud parameterizations. All the PDF-based parameterizations are found to be inaccurate for high cloud simulations, in either 
the magnitude or the structure. The primary reason is that the investigated PDFs are symmetrically assumed, yet the skewness 
factors in deep convective cloud regimes are highly significant, indicating the symmetrical assumption is not well satisfied in 
those regimes. Results imply the need to seek a skewed PDF in statistical schemes so that it can yield better performance in 
high cloud simulations. 
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Uncertainties of cloud simulations in climate modeling are 
one of the principal obstacles preventing accurate prediction 
of climate change (Webster and Stephens, 1984). Numerous 
studies have shown that model simulations are sensitive to 
the specification of cloudiness (Meleshko and Wetherald, 
1981; Shukla and Sud, 1981; Zhang et al., 2013). In the last 
two decades, growing attentions have been paid to the cloud 
parameterization (Lohmann et al., 1999; Bogenschutz and 
Krueger, 2013). Although significant progresses have been 
made and most cloud schemes at present are state-of-the-art, 
it is widely recognized that uncertainties in cloud parame-

terizations remain the major cause of discrepancies between 
observations and simulations. Though a thorny issue it is, 
the importance of cloud parameterization can never be 
overemphasized, as clouds have an important impact on 
atmospheric circulations and climate via regulating Earth’s 
radiation budget (Wang and Zhao, 1994).  

Among all the difficulties arising in cloud parameteriza-
tions, the following two are the most important. One comes 
from the cloud cover parameterization, which is essentially 
subject to the subgrid-scale nature of cloud-related process-
es (Randall et al., 2007). The other arises from cloud mi-
crophysical processes in dealing with cloud particles and 
hydrometeors. The above two are the so-called cloud mac-
rophysics and microphysics. Traditionally, cloud fractions 
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are parameterized empirically using relative humidity (RH) 
as a predictor; while cloud condensation processes are rep-
resented by cloud microphysical schemes, in which various 
processes such as condensation (evaporation), deposition 
(sublimation) and coagulation are explicitly treated. Since a 
few artificial assumptions are used in deriving the cloud 
parameterization, both cloud macrophysics and microphys-
ics are confronted with great uncertainties. Moreover, the 
two aspects always interact with each other, causing the 
problem more complex, as on one hand the cloud cover acts 
as an input for cloud microphysical schemes to get local 
cloud properties, on the other hand the cloud microphysics 
typically alter the cloud cover. Such a problem must be ad-
dressed if one wants to adapt an explicit cloud microphysics 
scheme into host models with coarse resolution (Chosson et 
al., 2014).  

Since most of the cloud microphysical schemes em-
ployed in large-scale models are of comparable complexity 
to those used in cloud-resolving models, the improvement 
on cloud cover parameterization is getting more and more 
urgent. The “all-or-nothing” approach was addressed by 
assuming no subgrid-scale fluctuations within a host grid 
(Ose, 1993; Fowler et al., 1996). Although such an assump-
tion holds well for high-resolution models, it is inappropri-
ate to apply it in large-scale models where turbulent- and 
convective-scale processes are usually unresolved. Frac-
tional cloud parameterizations are thus proposed, which are 
empirically related with the grid-scale RH and the critical 
RH (Sundqvist, 1978; Slingo, 1980). The latter is intro-
duced in an attempt to account for subgrid-scale variability. 
To better represent stratocumulus, other factors such as ver-
tical velocity, and static stability are replenished in later 
development. Distinguished from the RH-based empirical 
schemes, the Probability Distribution Function (PDF) based 
statistical schemes own their inherent advantages in treating 
subgrid-scale variability, as subgrid-scale fluctuations can 
be readily obtained given the PDFs. The pioneer work of 
such schemes dates back to Sommeria and Deardorff (1977), 
Mellor (1977), and Bougeault (1981), in which the Gaussian 
PDF is adopted. The challenge of these schemes lies in the 
specification of an appropriate PDF for the saturation deficit 
s , as well as the determination of its moments such as var-
iance and skewness. Various PDFs have been proposed in 
the literature and most of them are symmetrically assumed 
(Chen, 1991; Bechtold et al., 1995). The more complicated 
PDF like beta function, which takes skewness into account, 
is aimed for cirrus parameterization (Tompkins, 2002). To 
avoid the difficulty to specify the PDF and its moments, 
Cuijpers and Bechtold (1995) proposed a simple parameter-
ization, which is essentially based on a unimodal distribu-
tion computed as a linear combination of a Gaussian distri-
bution (for stratiform clouds) and an exponential distribu-
tion (for cumulus clouds). In this scheme, no further 
knowledge about the distribution function or the moments is 
needed. Due to its simplicity, the scheme is employed in the 

spectral atmospheric model developed at the State Key La-
boratory of Numerical Modeling for Atmospheric Physics 
and Geophysical Fluid Dynamics, Institute of Atmospheric 
Physics (LASG/IAP) (Dai et al., 2005). 

In between the RH-based empirical and PDF-based sta-
tistical schemes are semi-empirical schemes. The canonical 
one is proposed by Xu and Randall (1996a), which related 
cloud cover to RH and cloud hydrometeors. Although the 
PDFs are not explicitly used, the scheme can be viewed as 
manifestations of a statistical scheme where the actual PDF 
is not given, but the time-mean statistics of its integral are 
(Tompkins, 2002).    

The above three kinds of cloud cover parameterizations 
as well as their variants are widely used in large-scale mod-
els. However, fewer studies were documented regarding 
their performances (Xu and Randall, 1996b). Previous stud-
ies suffered from either scarcities of cloud observational 
dataset or non-linear interactions between dynamical and 
physical components. In this study, the cloud-resolving 
model is used to surmount these difficulties, since the CRM 
simulations can not only server as good surrogates, but also 
provide abundant subgrid-scale information which is usual-
ly unavailable in regular observations. It is also accessible 
to validate the PDFs in the literature in statistical cloudiness 
parameterizations.  

1  CRM case description and simulations 

1.1  Case description 

The field experimental campaign chosen in this study is the 
Tropical Rainfall Measuring Mission (TRMM) Kwajalein 
Experiment (KWAJEX), which occurred in Marshall Is-
lands (7°–10°N, 166°–169°E) with frequent convections. 
This case has been widely used and described in previous 
studies (Schumacher et al., 2008; Wang and Zhang, 2013). 
Figure 1 displays the observed temperature, moisture and 
their vertical advective tendencies, which are derived from 
the constrained variational analysis (Zhang and Lin, 1997; 
Zhang et al., 2001). Strong dynamic cooling in middle and 
upper troposphere (Figure 1(c)) along with the pronounced 
moisture convergence in lower levels (Figure 1(d)) is noted, 
which is in favor of deep convection.  

1.2  Model and experiments   

The cloud-resolving model used in this study is a three- 
dimensional, time-dependent model named SAM, which 
was kindly provided by Marat Khairoutdinov of Stony 
Brook University. The dynamical framework of the model 
is based on the anelastic equations of motion. The prognos-
tic thermodynamical variables of the model are liquid wa-
ter/ice moist static energy, total nonprecipitating water, and 
total precipitating water. The model has been widely used in 
convection and cloud studies (Fan et al., 2009; Oreopoulos  
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Figure 1  Observations for TRMM KWAJEX. (a) Temperature (K); (b) specific humidity (g kg−1); vertical advection of (c) temperature (K d−1) and (d) 
moisture (g kg−1 d−1). In (c) and (d), contour interval is 5 and 2, respectively. Solid lines are for contours greater than or equal to zero and dotted lines for 
contours less than zero. 

and Khairoutdinov, 2003; Wang and Zhang, 2014). More 
detailed information about SAM is referred to Khairoutdi-
nov and Randall (2003).    

The CRM run uses initial soundings and time-dependent 
forcings based on the constrained optimization method of 
Zhang et al. (2001) for the time period of 24 July–14 Sep-
tember 1999. The simulation uses 64 vertical levels with 
grid spacing that increase smoothly from 75 m at the surface 
to a nearly uniform spacing of 400 m through the tropo-
sphere and a larger spacing of 1 km in the Newtonian 
damping region between 19 km and model top (27 km). A 
horizontal grid of 256×256 points is used with a resolution 
of 1 km.  

1.3  Model simulations 

Figure 2(a) and (b) presents the simulated temperature T, 
specific humidity Q as well as their biases against observa-
tions. Although intermittent moist biases exist near the mid-
dle level, the model generally well reproduces the observed 
temperature and moisture, with the error within the range of 
±5 K for T and ±1.5 g kg−1 for Q. Flaky cold biases in high 
levels are likely due to errors in the observational datasets. 
The simulated surface precipitation is shown in Figure 2(c), 
associated with the observed rainfall. As expected, the sim-
ulation exhibits remarkably similar and realistic behavior in 
either the occurrence or the magnitude of the precipitation. 
Figure 2(d) gives the shaded cloud fraction (optical 
depth>0.3) (black), top-of-atmosphere (TOA) outgoing 
longwave radiation OLR (blue) and daily averaged TOA 
reflected shortwave radiation (RSR) (red). In a comparison 
between Figure 2(c) and (d), it is noted that heavy precipita-
tion is usually associated with an increase in cloud fraction, 
thereby corresponding to a decrease of OLR and an increase 

of RSR, implying a parallel relation between precipitation 
and outgoing longwave (reflected shortwave) radiation.  

The outstanding performance of SAM guarantees us to 
use its simulation as a substitution for observations, from 
which both grid and subgrid thermodynamic variables can 
be obtained. To further ease the analysis, a fragment of two 
days is extracted from the whole integration period, during 
which a strong precipitation event is covered. For the ex-
tracted fragment, the simulations of precipitation, relative 
humidity (RH), cloud fraction, cloud water/ice and 
rain/snow are displayed in Figure 3. The perfect simulation 
of precipitation is again noticed (Figure 3(a)). From the 
view of microscopies, the heavy rainfall is attributed to the 
large mass of rain/snow in upper levels, which falls to the 
ground with a significant terminal velocity (Figure 3(e)). 
The center of cloud water/ice is above the frozen level 
(Figure 3(d)), indicating cold cloud precipitating process 
predominates. Strong precipitation is closely related with 
high RH in middle levels and large cloud fraction in upper 
levels (Figure 3(b), (c)). In calculating RH, the algorithm 
for saturation specific humidity is distinguished between 
water and ice, depending on temperature. If T≥0°C, the satu-
ration specific humidity is assumed to be with respect to wa-
ter; otherwise, it is with respect to ice. Although it is clear 
that RH plays an important role in parameterizing cloud cov-
er, it is undoubtedly that RH is not a perfect predictor.  

2  Cloud cover algorithms in the literature 

Prior to the performance comparisons of cloud cover pa-
rameterizations, a brief description of the general method-
ology of their mathematic formulations is given. Three 
cloud cover parameterizations are presented, including the  
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Figure 2  CRM simulations for TRMM KWAJEX. (a) Temperature (K); (b) specific humidity (g kg−1); (c) precipitation (mm d−1); (d) shaded cloud fraction 
(black), OLR (blue) and daily averaged TOA reflected shortwave radiation (red) (W m−2). Differences between simulations and observations are shaded in (a) 
and (b).  

 

Figure 3  CRM simulations for TRMM KWAJEX. (a) Precipitation; (b) relative humidity (%); (c) cloud fraction (%); (d) cloud water/ice (g kg−1);       
(e) rain/snow (g kg−1).   
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RH-based empirical scheme, the semi-empirical scheme and 
the PDF-based statistical scheme.  

2.1  RH-based empirical scheme 

For this kind of scheme, fractional cloud cover C is an em-
pirical function of RH written as eq. (1), where r is the 
grid-mean RH and ro is a condensation threshold specified 
as a function of height following Xu and Krueger (1991), 
which is expressed in eq. (2). The threshold ro is assumed to 
decrease with height, implying condensation is easier to 
occur in upper levels than in lower levels under the same r. 
Growth of existing clouds or formation of new clouds oc-
curs if r > ro. Conversely, an existing cloud is dissipated by 
evaporation or sublimation once r > ro.  
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2.2  Semi-empirical scheme 

The semi-empirical cloudiness parameterization addressed 
by Xu and Randall (1996a) uses the large-scale average 
condensate (cloud water/ice) as the primary predictor, in 
addition to the grid-mean RH.  The formulation is ex-
pressed as   

     l1 exp( )pC r q ,  (3) 

where p and  are tunable parameters equaling 0.25 and 100, 
respectively. As implied in eq. (3), C will gradually ap-
proach its upper limit rp as lq  increases. On the contrary, 

once lq  equals 0, no cloud exists regardless of RH.     

2.3  PDF-based statistical scheme 

Sommeria and Deardorff pioneered statistical scheme on the 
basis of bivariate normal function of two conserved ther-
modynamic variables: total water qt and liquid potential 
temperature l. Since water vapor perturbations can be cor-
related with temperature perturbations, which alter the local 
saturation vapor pressure, the joint PDF between qt and l 
thus can be reformulated in terms of a single variable s, de-
fined as the saturation deficit 

    l t l( )s a q , (4) 

where the primes denote the derivation from the mean state, 
and the constants are defined as 

     *
l l( ) /q , (5) 
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The overbar in eqs. (5) and (6) stands for the grid-mean 
state, q* is the saturation water vapor mixing ratio, and Tl is 
the liquid water temperature. Physically, s describes the 
distance between the thermodynamic state and the linear-
ized saturation vapor mixing ratio curve. The departure of 
the mean state from saturation is expressed as  

     *
0 l t l s( ( )) /a q q .  (7)  

Thus the cloud fraction C, and the cloud condensate lq  

are determined by 
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where P(s) is the PDF of s. Given a Gaussian distribution, 
the analytical solution of cloud fraction C and cloud con-
densate lq  can be readily obtained, expressed as 
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where erf(x) is the error function 
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The stand deviation of s(s) is derived according to eq. 
(4), written as 

          2 2 2
l t l l t l l2s a q q , (13) 

which is a combination of the variance of l (l
) and qt(qt

), 
as well as their covariance. The above equations are widely 
used in previous studies (Tompkins, 2002; Xu and Randall, 
1996b). In most cases, l

 and qt
 predominate over their 

covariance, which are presented in Figure 4. Large vari-
ances are observed during the strong convective period, 
demonstrating that subgrid-scale turbulences in those days 
are rather intense.   

3  Performance comparisons of various cloudi-
ness parameterizations 

3.1  Comparisons of parameterized cloud cover 

Figure 5 gives the cloud amounts that were calculated with 
the above three schemes, as well as the original CRM ex-
plicit simulation. Overall, all three parameterizations are 
successful in reproducing the locations of the maxima cloud  
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Figure 4  Stand deviations for liquid water potential temperature (K) (a) and total water (g kg−1) (b).   

 

Figure 5  Cloud cover simulated by CRM (a), RH-based empirical scheme (b), semi-empirical scheme (c), and Gaussian PDF-based statistical scheme (d) 
(%).  

amount between day 18.5 and day 19. However, the magni-
tudes are somewhat over predicted, especially for the 
semi-empirical scheme. For statistical schemes, the over-
prediction of middle and high cloud is due partly to the poor 
assumption that supersaturation is not allowed to occur 
during the condensation process. Although it is a good ap-
proximation for warm clouds, it is not for ice clouds, as 
observations have shown large supersaturations with respect 
to ice often exist (Tompkins, 2002). Relaxing the assump-
tion by taking supersaturation into account is beyond the 
scope of this study, and will be the subject of future re-
search. Although the RH-based empirical scheme well sim-
ulates the time location of maxima cloud, it fails in repro-
ducing the vertical structure, as the altitude of cloud center 
is systematically lower compared with CRM simulations. 
Furthermore, low clouds after day 19 are artificially pro-
duced. The poor performance is understandable, as the 
scheme is heavily dependent on RH though the condensa-
tion threshold ro is introduced. Increasing ro leads to a de-
crease in cloud fraction C, whereas decreasing the value of 
ro causes an increase in C. Thus for this case, ro in low and 

middle levels is significantly underestimated. Although we 
can adjust ro to get a perfect cloud structure in this case, it 
can hardly be universal. In reality, ro has a large variation in 
space and altitude (Quaas, 2012). The Gaussian PDF-based 
statistical scheme performs much better, especially for the 
low cloud. Note the low level cloudlessness after day 19 is 
also well reproduced. The semi-empirical scheme shows a 
comparable performance with the PDF-based scheme, and 
even better in the low cloud simulation. Although RH is still 
a predictor in the semi-empirical scheme, the scheme is 
more dependent on the other predictor: cloud condensate 

lq . For example, if lq  equals 0, there will be no cloud no 

matter how large RH is. In fact, such dependence is clearly 
reflected in Figure 3, as the pattern of cloud water/ice re-
sembles cloud structure more than that of RH.  

3.2  Impacts of different PDFs on cloud parameteriza-
tion 

In addition to the Gaussian PDF discussed above, two other 
widely-used PDFs are also explored to investigate the im-
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pact of different PDFs on cloud parameterizations. A sharp 
PDF based on triangular distribution function and a smooth 
PDF based on broad distribution function are employed 
(Smith, 1990; Lohmann et al., 1999), which are defined as 
eqs. (14) and (15), respectively. 
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Visual examination of the two alternative PDFs as well 
as the Gaussian PDF is given in Figure 6(a). Given 0 var-
ying from 4 to 4, integrals of the r.h.s of eq. (8) with the 
specified P(s) yield the corresponding cloud fraction C, 
which are shown in Figure 6(b).   

The simulated cloud cover by two alternative PDFs are 
shown in Figure 7, along with those by the Gaussian PDF 
and the CRM simulation. Generally, the performances are 

much similar to that by Gaussian PDF, although tiny dif-
ferences appear in low levels. This is because the three 
PDFs are much similar in the distribution (Figure 6(a)). 
Thus, their integrations with respect to the same lower limit 

(0) are also similar (Figure 6(b)). One noticeable differ-
ence lies in the region where |0|>1.5. As displayed in Fig-
ure 6(b), the cloud fraction C calculated by the broad PDF 
is larger than those by the other two, which is attributed to 
larger weights within relatively dry regions. Given that the 
atmosphere is usually far away from saturation at low levels, 
the above analysis answers why the broad PDF produces 
more cloud than the other two in the lower troposphere.  

In addition to cloud amount, the PDF-based statistical 
scheme can produce cloud condensate as well. In this sense, 
the cloud macrophysics and microphysics are treated in a 
consistent manner, as the cloud macrophysical and micro-
physical properties are obtained via the same PDF. The pre-
dicted cloud condensates according to eq. (9) are shown in 
Figure 8. Overall, all three schemes are successful in repro-
ducing the cloud condensate center, although the magnitude 
is somewhat overestimated. The over- prediction of cloud 
hydrometeors arises from the non-precipitating assumption.  

 

 

Figure 6  Probability distribution functions (a) and their integrations with respect to the lower limit 0 (b).  

 

Figure 7  Cloudiness simulated by (a) CRM, (b) Gaussian PDF-based statistical scheme, (c) triangular PDF-based statistical scheme, and (d) broad 
PDF-based statistical scheme (%).  
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Figure 8  Cloud condensate simulated by (a) CRM, (b) Gaussian PDF-based statistical scheme, (c) triangular PDF-based statistical scheme, and (d) broad 
PDF-based statistical scheme (g kg−1).  

In fact, precipitating hydrometeors like rain/snow can be as 
large as cloud water/ice in strong convective events (Figure 
3(e)). In consistency with the better performance in low 
cloud simulation with the broad PDF, the cloud condensate 
in low levels is also better simulated.   

3.3  Problems of the symmetrical PDF 

In essence, the symmetrical PDF-based statistical schemes 
depend on two variables, the departure of the mean state to 
saturation qt−qsl and the stand deviation of s(s), which are 
shown in Figure 9(a) and (b). Widespread unsaturation is 
observed in low levels, while saturation occurs in upper 
levels during the strong precipitation period. The stand de-
viation s generally decreases with height above 500 hPa, 

where the maximum s is located. The pattern of s shows a 
similar behavior to that of qt 

(Figure 4(b)). This is because 
fluctuations of temperature are likely to be smaller in mag-
nitude than that of total water, especially in the tropics 
where gravity waves remove lateral fluctuations of temper-
ature on fast timescales (Bretherton and Smolarkiewicz, 
1989). The ratio of qt−qsl and s, defined as the normalized 
departure to saturation (0), is presented in Figure 9(d). The 
pattern is extremely close to that of cloud cover C, as the 
latter is monotonously regulated by 0 (Figure 6(b)).   

While non-supersaturation assumption may partly ac-
count for cloudiness biases in high levels, it is not the cul-
prit. The primary cause lies in the symmetrically assumed 
PDF. In fact, positive skewness is often observed during the  
convective process (Larson et al., 2001). Figure 9(c) gives  

 

 

Figure 9  Time-pressure distribution for qt−qsl (g kg−1) (a), stand deviation of S (g kg−1) (b), the third moment of S (g3 kg−3) (c), and normalized departure 
of the mean state from saturation (d).  
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the third moment of s(s). As noticed, positive s is widely 
spread, indicating S is not symmetrically distributed, but 
positively skewed.  

To better illustrate this, Figure 10 gives the PDF of s  at 
various model levels throughout the troposphere for one 
particular snapshot. The data are 65536 grid points in total 
for each level, and are divided into 200 bins of equal width. 
At lower heights, the distribution is approximately bell- 
shaped, and appears to be approximately unimodal, which 
well obeys the Gaussian distribution. However, at middle 
and upper heights, bimodal skewed distributions are ob-
served instead, which is far away from the Gaussian distri-
bution.  

4  Discussion and conclusions 

In this study, three kinds of the widely used cloudiness pa-
rameterizations have been evaluated with data produced 
from the CRM explicit simulations of tropical cloud sys-
tems during KWAJEX. With regard to the predicted cloud 
cover, the RH-based empirical scheme performs the worst 

among all of the three schemes, while the semi-empirical 
and PDF-based statistical schemes show a comparable per-
formance. For the low cloud prediction, the semi-empirical 
scheme is even better than the PDF-based statistical scheme. 
However, it is important to point out here that there are es-
sentially no clear distinctions among the three parameteriza-
tions. The only difference lies in the different treatment of 
subgrid-scale cloud-related processes. The RH-based 
scheme uses ro in an attempt to account for the subgrid var-
iability. If a time-invariant variance is used in a statistical 
scheme, it can be readily reduced to an RH-based scheme. 
Semi-empirical parameterizations such as Xu and Randall, 
which relate cloud fraction to both RH and cloud conden-
sate, can be viewed as manifestations of a statistical scheme 
where the actual PDF is not known, but the grid-mean sta-
tistics of its integral are.  

In addition to the Gaussian PDF, two alternative PDFs 
are also explored to investigate the impact of different PDFs 
on cloudiness parameterizations. Overall, their performanc-
es are much similar to that by Gaussian PDF. The underep-
rediction of low cloud in Gaussian and Triangular PDF is 
significantly improved in the broad PDF, which is due to  

 

 
Figure 10  PDFs of S taken at various model levels at one snapshot (solid), with the Gaussian PDF as a reference (dashed).   
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larger weights within relatively dry regions. However, high 
cloud simulation is not getting better with the varied PDFs, 
which is essentially due to the symmetrical PDF assumption, 
which is positively skewed in reality. In fact, PDF-based pa-
rameterizations were originally intended for use in cloud- 
resolving models where subgrid cloudiness is only associated 
with turbulence-scale motion (Sommeria and Deardorff,  
1997; Mellor, 1997), which can be appropriately deemed as 
symmetrically distributed. However, in large- scales models, 
a wide range of scales of motion, from turbulence through 
convection scale to mesoscale, coexist within a grid cell. 
Thus, high-order moments like skewness must be consid-
ered for convective cloud regimes, where the detrainment 
from deep convective updraft usually leads to a positive 
skewness of S. Tompkins (2002) took skewness into ac-
count with the aid of beta function, which can give both 
negatively skewed and positively skewed functions as well 
as symmetric Gaussian-like bell-shaped curves. The 
framework is outstanding, and sheds light on high cloud 
cover parameterizations in convective regimes. However, it 
is physically too complex. The determination of two shape 
parameters p and q in Tompkins’s scheme remains unclear, 
although he provided approaches to relate the distribution 
moments to each physical process. Recently, Perraud et al. 
(2011) revisited the possibility of using most of the different 
distributions posed in the literature for a statistical descrip-
tion of Planet Boundary Layer (PBL) clouds. They found 
that shallow convections rooted in PBL typically lead to 
positively skewed distributions with a long flat tail in moist 
regions. Unimodal PDFs are found to be insufficient to cor-
rectly fit the long tail distributions. In contrast, bimodal 
distributions like the double Gaussian distribution allow a 
more accurate representation of the long tail, thus improv-
ing the simulations to some extent. While a bimodal distri-
bution may be accurate enough to account for stratocumulus 
and stratus, it may not for cumulonimbus, particularly for 
the anvils caused by penetrative convections. In practice, it 
is most challenging to provide a unified approach for all 
cloud types. During the last two decades, encouraging pro-
gresses have been made in PBL cloud parameterizations, 
which constituted a hierarchy of schemes ranging from the 
independent cloud parameterizations to turbulence-convec- 
tion-cloud coupled schemes (Akira et al., 2010; Lappen and 
Randall, 2001; Larson et al., 2002). For latter schemes, ex-
pensive computation cost is usually a burden, as higher or-
der equations must be solved to close the system. It is 
therefore a trade-off between complexity and efficiency. 
Due to the poor understanding of deep convection, how to 
well represent the cirrus remains unclear. Although more 
complex joint PDFs may be helpful, it is desirable to seek 
simple assumed PDFs that can physically represent the 
skewness. 
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