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ABSTRACT 

A new method to quantify the predictability limit of ensemble forecasting is presented 

using the Kullback--Leibler (KL) divergence (also called the relative entropy), which 

provides a measure of the difference between the probability distributions of ensemble 
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forecasts and local reference (true) states. The KL divergence is applicable to a non-normal 

distribution of ensemble forecasts, which is a substantial improvement over the previous 

method using the ensemble spread. An example from the three-variable Lorenz model 

illustrates the effectiveness of the KL divergence, which can effectively quantify the 

predictability limit of ensemble forecasting. On this basis, the KL divergence is used to 

investigate the dependence of the predictability limit of ensemble forecasting on the initial 

states and the magnitude of initial errors. The local predictability limit of ensemble 

forecasting varies considerably with the initial states, as well as with the magnitude of initial 

errors. Further research is needed to examine the real-world applications of the KL 

divergence in measuring the predictability of ensemble weather forecasts. 
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Article Highlights: 

 A new method is introduced to quantify the predictability limit of ensemble forecasting 

using the KL divergence. 

 The KL divergence is applicable to a non-normal distribution of ensemble forecasts, 

thereby overcoming the limitations of ensemble spread. 

1. Introduction 

The atmosphere is a chaotic system in which small errors in its initial state can lead to 

large forecast errors (Thompson, 1957; Lorenz, 1963, 1965; Chou, 1989; Li and Chou, 1997; 

Bengtsso and Hodges, 2006). We can never observe every detail of the atmosphere’s initial 
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state, either in terms of spatial coverage or accuracy of measurements, so the initial 

conditions from which every forecast starts are inevitably slightly inaccurate. Small errors in 

the initial state will be amplified, so there is always a limit to how far ahead we can predict 

weather events (Lorenz, 1969, 1995; Dalcher and Kalnay, 1987; Li and Ding, 2011). 

Considering that weather predictions are inherently uncertain, the concept of ensemble 

forecasting was proposed to provide probabilistic forecasts of the future state of the 

atmosphere (Epstein, 1969; Leith, 1974). The basic idea of ensemble forecasting is to 

produce not just one single forecast but an ensemble of many forecasts starting from slightly 

different initial conditions. 

In contrast to a single forecast, the ensemble mean of forecasts acts as a nonlinear filter 

that reduces forecast error (Toth and Kalnay, 1993). In general, the ensemble mean of 

forecasts will, on average, have a smaller error than the error of any of the single forecasts 

making up the ensemble (Leith, 1974; Murphy, 1988). Most importantly, the spread between 

the ensemble members (also called the forecast variance), which is an estimate of the 

standard deviation of ensemble members with respect to the ensemble mean, provides key 

information on the degree of confidence in the predictions under the assumption that the 

outputs of the ensemble members follow a normal distribution (Barker, 1991; Buizza, 1997; 

Palmer et al., 1998; Zhu et al., 2002). A large (small) ensemble spread indicates more (less) 

uncertainty in the prediction in general. In view of its advantages, ensemble forecasting is 

commonly performed at most of the major operational weather prediction centers worldwide, 

including the National Centers for Environmental Prediction (Toth and Kalnay, 1993, 1997; 
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Wei et al., 2006, 2008), the European Centre for Medium-Range Weather Forecasts (Molteni 

et al., 1996; Buizza, 1997), and the Canadian Meteorological Centre (Houtekamer et al., 

1996). 

Ensemble forecasting aims to provide an approximate description of the probability 

distribution of possible future states of the atmosphere. The probability information is 

typically derived by using a finite number of ensemble members. Assuming that the forecast 

probability distribution is normal or unimodal, the width of the distribution from forecast to 

forecast can be measured by the ensemble spread or variance. However, the forecast 

probability distribution is not always unimodal and can sometimes be bimodal or even 

multimodal. In this case, the ensemble spread may fail to reflect the ensemble mean skill or 

predictability of ensemble forecasting. As pointed out by Whitaker and Loughe (1998), even 

for a perfect ensemble the correlation between the ensemble spread and skill may be very low. 

In addition, the ensemble spread has limited utility as a predictor of ensemble mean skill 

(Houtekamer, 1993; Kumar et al., 2000; Grimit and Mass, 2002; Tang et al., 2008a). 

Given that ensembles provide flow-dependent probabilistic forecasts of the future state 

of the atmosphere, it is more appropriate to investigate the predictability of ensemble 

forecasting from the standpoint of the flow-dependent probability distribution of ensemble 

forecasts instead of the ensemble spread. In the present study, in relation to the forecast 

probability distribution, we introduce the Kullback--Leibler (KL) divergence (also called the 

relative entropy) to measure the predictability limit of ensemble forecasting. The KL 

divergence is a measure of how one probability distribution diverges from a second, expected 
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probability distribution (Kullback and Leibler, 1951), thereby enabling an estimate of the 

difference between the probability distributions of ensemble forecasts and local reference 

(true) states. By investigating the evolution of the KL divergence with time, we can 

quantitatively estimate the predictability limit of ensemble forecasting. In contrast to the 

ensemble spread, the KL divergence not only provides a quantitative measure of the 

predictability limit of ensemble forecasting but is applicable to a non-normal distribution of 

ensemble forecasts, thereby overcoming the limitations of the ensemble spread and providing 

an effective way to investigate the predictability of ensemble forecasting. 

Note that information theory measures, such as the KL divergence or relative entropy, 

have been used in previous studies to measure the skill of ensemble forecasts (Stephenson 

and Dolas-Reyes, 2000; Roulston and Smith, 2002; DelSole, 2004, 2005; Tang et al., 2005, 

2008b). However, in these studies the entropy of ensemble forecasts was used as a measure 

or predictor of forecast skill, rather than a measure of the predictability limit. In this paper, 

we present a wider role of information theory in quantifying the predictability limit of 

ensemble forecasting, which can provide useful information on the time at which ensemble 

forecasts become meaningless. 

The remainder of this paper is organized as follows. Section 2 provides a definition of 

the KL divergence and presents a method to compute the KL divergence for ensemble 

forecasting. Section 3 tests the validation and usefulness of the KL divergence in measuring 

the predictability of ensemble forecasting by applying it to a simple system---the 
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three-variable Lorenz model. Section 4 summarizes the major results of this work and 

discusses possible limitations and future research. 

2. Methods 

2.1 KL divergence 

The KL divergence measures the difference between two probability distributions P  

and Q  (Kullback and Leibler, 1951). For discrete probability distributions P  and Q , the 

KL divergence from Q  to P  is defined as 

KL

( )
( ) ( ) log

( )i

P i
D P Q P i

Q i
 ,       (1) 

where “||” denotes “relative to”, and Eq. (1) is equivalent to 

KL

( )
( ) ( ) log

( )i

Q i
D P Q P i

P i
  .      (2) 

For distributions P  and Q  of a continuous random variable x , the KL divergence is 

defined as 

KL

( )
( ) ( ) log

( )

p x
D P Q p x dx

q x




  ,      (3) 

where p  and q  represent the probability densities of P  and Q . The KL divergence is 

always non-negative, with KL ( )D P Q  zero if and only if P Q . 

2.2 Local attractor radius 
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Let ix  be a specific state on a compact attractor  , then the local attractor radius 

(LAR, RL) with respect to the state ix  is defined by Li et al. (2018) as 

2
( ) ( ), ,L i i iR E  x x x x x ,     (4) 

where the norm  represents the L
2
-norm and E  denotes the expectation. The LAR 

measures the root-mean-square distance between one specific state ix  and all other states on 

an attractor. In terms of the LAR, the local attractor with respect to the state ix  can be 

defined as a subset of all states on the attractor whose distance to the state ix  is less than the 

LAR. Li et al. (2018) showed that the LAR can be used as an objective metric to quantify the 

local predictability limit of forecast models. In the present study, the LAR is used to define 

the local attractor with respect to a specific reference state and to construct the probability 

distributions of local reference (true) states. 

An example from the three-variable Lorenz system is given to illustrate the spatial 

structure of the LAR over the Lorenz attractor. The three-variable Lorenz system is  

dX
X Y

dt

dY
rX Y XZ

dt

dZ
XY bZ

dt


  




  



 


,       (5) 

where   = 10, r  = 28, and b  = 8/3, for which the system exhibits chaotic behavior 

(Lorenz, 1963). Figure 1 shows a projection of the LAR over the Lorenz attractor in the x--y 

plane. Obviously, the LAR varies widely over the attractor, with a minimum value of the 

LAR of ~15 and the maximum value exceeding 35. The LAR is not randomly distributed but 
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exhibits a distinct organization in phase space, consistent with the results of Li et al. (2018). 

The LAR is antisymmetric with respect to the x- or y-axis, with minimum values at the 

intersection of the two wings and maximum values at the outermost rims. As the LAR varies 

over the attractor, the local attractor with respect to a specific state also changes with the 

state. 

2.3 Calculation of the KL divergence in ensemble forecasting 

The definition of the KL divergence in Eq. (1) aims to quantify the difference between 

two probability distributions, P  and Q . To compute the KL divergence in ensemble 

forecasting, it is necessary to estimate the probability distribution of local reference (true) 

states (hereafter P ) and the probability distribution of ensemble forecasts (hereafter Q ). 

For a specific reference state ix , we first calculate the LAR of the state ix . Then, we can 

obtain the subset of all states on the attractor whose distance to the reference state is less than 

the LAR. Finally, the probability distribution P  of local reference (true) states can be 

obtained based on the subset of the states on the local attractor. 

When N  random perturbations are added to or subtracted from the reference states, 

N  different results of ensemble forecasts can be generated from the prediction model. Based 

on N  ensemble forecasts, the probability distribution Q  of ensemble forecasts can then 

be obtained. Once both P  and Q  are obtained, we can directly compute the KL 

divergence. As the reference state and ensemble forecasts change with the forecast time, the 

KL divergence will vary with the forecast time. By examining the evolution of the KL 
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divergence with the forecast time, we can quantitatively estimate the predictability limit of 

ensemble forecasting. 

2.4 Nonlinear local Lyapunov exponent method 

The nonlinear local Lyapunov exponent (NLLE), which is a nonlinear extension of the 

existing linear finite-time or local Lyapunov exponents (Yoden and Nomura, 1993; Boffetta 

et al., 1998; Ziehmann et al., 2000), measures the mean growth rate of the initial errors of 

nonlinear dynamical systems without having to linearize the nonlinear equations of motion 

(Ding and Li, 2007, Ding et al., 2008a; Li and Ding, 2011). The NLLE and its derivative (i.e., 

the mean relative growth of the initial error) have been widely applied to quantitatively 

determine the limit of dynamic predictability of weather or climate variables (Ding et al., 

2008b, 2010, 2011, 2015), exhibiting superior performance to the existing linear finite-time 

or local Lyapunov exponents. A brief description of the NLLE method is given in Appendix 

A. 

Note that the NLLE method is defined based on nonlinear error dynamics, while the KL 

divergence is defined based on probability and information theory. Some differences exist 

between both methods. For example, the NLLE method uses the root-mean-square error as 

the measure of error, and therefore depends on the dimension of variables. In contrast, the KL 

divergence uses the difference between two probability distributions as the measure of 

uncertainty, and therefore does not depend on the dimension of variables. This may be one 

advantage of the KL divergence relative to the NLLE method. Nevertheless, although the 

NLLE method (the KL divergence) is used to determine the predictability limit by exploring 
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the evolution of initial errors (the evolution of forecast probability distributions), considering 

that the predictability limit is an intrinsic property of a given dynamical system that does not 

depend on specific methods (Lorenz, 1969; Mu et al., 2017), the predictability limit of 

ensemble forecasting derived from the KL divergence and from error evolution should be 

consistent (see Fig. 2). Therefore, we compare the predictability limits of ensemble 

forecasting derived from the KL divergence and NLLE. Their consistency would support the 

effectiveness of the KL divergence in measuring the predictability of ensemble forecasting. 

3. Results 

Taking the three-variable Lorenz model as an example, we examine the evolution of the 

KL divergence with forecast time t  for ensemble forecasting. Starting from a randomly 

chosen initial state 01x
 
(−5.76, −0.29, 30.5) on the Lorenz attractor, we first integrate the 

Lorenz model to obtain the long-term model states as the reference states. The local attractor 

with respect to each reference state can be determined from the LAR, and then the probability 

distribution P  of local reference (true) states can be obtained based on the subset of the 

states on the local attractor. Note that the local attractor and its probability distribution P  

depend on the reference states that vary with integration time. To obtain the probability 

distribution Q  of ensemble forecasts, we superpose 
510N   initial perturbations with the 

same amplitude,  , and random directions in phase space onto the initial state 01x  to 

generate slightly different initial states. Then, ensemble predictions are made starting from 

these different initial states. For each forecast time, the probability distribution Q  of 
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ensemble forecasts can be obtained based on ensemble members. The KL divergence is 

calculated based on Eq. (1) for discrete probability distributions P  and Q . 

Figure 3a
 
shows the variation in the KL divergence as a function of time t  for the 

initial state 01x
 
(−5.76, −0.29, 30.5). The KL divergence shows a nonuniform growth 

process with time. At time t
 
~ 7, the KL divergence reaches a maximum value, implying 

that the probability distribution Q  of ensemble forecasts deviates most from the probability 

distribution P  of local reference (true) states. At this time, the forecast distribution yields 

unreliable probabilistic forecasts, and the ensemble prediction can be considered meaningless. 

If the time at which the KL divergence reaches its maximum value is specified as the local 

predictability limit, the predictability limit of ensemble forecasting starting from 01x
 
with 


 
would be 

p 7T  . For another initial state 02x
 
(10.3, 0.92, 16.7), the KL 

divergence shows a similar zigzag growth process before it reaches the maximum value at 

around 11t   (Fig. 4a). According to the definition, the local predictability limit of 

ensemble forecasting starting from 02x
 
with   would be 

p 11T  , greater than the 

predictability limit at 01x . 

To understand why the KL divergence varies with time, we examine the evolution of the 

probability distributions P  (local reference states) and Q  (ensemble forecasts) with time 

for 01x  (Fig. 5). Both probability distributions P  and Q  change with time. At the 

beginning of ensemble forecasting, Q  is concentrated in the center of P . Gradually, the 

range of Q  becomes wider as ensemble perturbations tend to diverge over time. 

Correspondingly, Q  begins to diverge from P  and the KL divergence gradually becomes 
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larger. When 7t  , the difference between P  and Q  is significant. As a result, the KL 

divergence reaches its maximum value at that moment. Afterwards, Q  gradually converges 

to the distribution of the entire attractor as ensemble perturbations expand to the entire 

attractor, and instead P  falls within Q . Correspondingly, the KL divergence drops from 

the peak and then enters the nonlinear stochastic fluctuation phase. In addition, we note in Fig. 

5 that ensemble forecasts do not follow a normal distribution for each forecast time, implying 

that the ensemble spread may not be appropriate to provide an accurate measure of the 

predictability of ensemble forecasting. In contrast, the application of the KL divergence in 

this paper excludes the influence of the type of probability distribution, and therefore ensures 

the accuracy of estimates of the predictability of ensemble forecasting. 

We now examine the evolution of the local attractor (green points in Fig. 6) and 

ensemble forecast states (red points in Fig. 6) starting from 01x  over the entire Lorenz 

attractor. At the beginning of the ensemble forecast, all ensemble forecast states fall within 

the local attractor. As the prediction time increases, ensemble forecast states begin to fall 

outside the local attractor, and gradually expand to the entire attractor. When 7t  , almost 

all ensemble forecast states fall completely outside the local attractor, and the prediction 

subsequently becomes meaningless as the KL divergence reaches its maximum value (Li et 

al., 2018). Therefore, it is reasonable to use the maximum value of the KL divergence to 

measure the predictability of ensemble forecasting. 

The predictability of ensemble forecasting derived from the probability and error 

evolutions should be consistent. It is interesting to compare the local predictability limit 
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obtained using the KL divergence and NLLE. Figure 3b shows the ensemble mean error 

growth over 510  initial random perturbations obtained using the NLLE method for the 

initial state 01x  and  . The mean error initially shows an oscillating growth, and 

finally stops increasing and enters the nonlinear stochastic oscillation regime with a constant 

average value. Once the error growth enters the nonlinear stochastic oscillation regime, 

almost all predictability is lost and the prediction becomes meaningless. Following the work 

of Ding et al. (2008b), we determine the local predictability limit as the time at which the 

mean error reaches the average value of the nonlinear stochastic fluctuation states. Then, we 

find that the predictability limit at 01x  with   calculated using the NLLE method is 

p 7T  , which is consistent with the predictability limit derived from the KL divergence. 

Similarly, the predictability limit at 02x  with   calculated using the NLLE method 

is 
p 11T   (Fig. 4b), which is also consistent with the predictability limit derived from the 

KL divergence. The consistency across methods lends support to the effectiveness of the KL 

divergence in measuring the predictability of ensemble forecasting. 

Figure 7 shows the variations in the local predictability limit of ensemble forecasting as a 

function of initial states ix  with   for a typical trajectory on the Lorenz attractor. 

The local predictability limit of ensemble forecasting varies widely with initial state on the 

Lorenz attractor. For 600 initial states, we find that a minimum value of the local 

predictability limit is ~3.6, while the maximum value is ~16. Local predictability limits 

obtained using the KL divergence and NLLE closely resemble each other, with a correlation 
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coefficient of 0.92 (significant at the 99.9% confidence level). These results indicate that the 

predictability of ensemble forecasting depends on the initial states of the ensemble forecast. 

We now consider the structure of predictability in phase space by investigating the 

three-dimensional distribution of the local predictability limit derived from the KL 

divergence (Fig. 8). The local predictability limit has a distinct organization in phase space. 

On the whole, the inner and outer rims of each wing of the Lorenz attractor have a relatively 

high local predictability limit, while the regions between the inner and outer rims of each 

wing have a relatively low predictability limit, consistent with the distribution of the local 

predictability limit derived from the NLLE method (Huai et al., 2017). Huai et al. (2017) 

pointed out that this structure of the local predictability limit in phase space may be related to 

the local dynamics of the Lorenz attractor that affects the length of time that each point 

remains on the current wing, and this period of time is important in determining the local 

predictability limit of each point. This underlying structure allows the identification of 

regions in phase space of high and low predictability and may be helpful in estimating the 

predictability for each point. 

The predictability of ensemble forecasting depends on the initial states as well as the 

magnitude of initial errors. For the analysis presented above, the magnitude   of initial 

errors is fixed as 10
−3

. We next examine the dependence of the predictability of ensemble 

forecasting on the magnitude of initial errors. Figure 9 shows the local predictability limits 

derived from the KL divergence as a function of the magnitude of initial errors for the initial 

state 03x  (6.03, 9.71, 16.5). As a comparison, local predictability limits derived from the 
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NLLE method as a function of the magnitude of initial errors are also shown in Fig. 9. Local 

predictability limits derived from the KL divergence and NLLE decrease approximately 

linearly as the logarithm of the magnitude of initial errors is increased. For a specific initial 

error, the local predictability limit derived from the KL divergence is very close to the limit 

derived from the NLLE method. Similar results are obtained for initial states 01x  and 02x  

(not shown), indicating that the predictability of ensemble forecasting is sensitive to the 

magnitude of initial errors. 

Let us now consider an important question concerning the influence of the number of 

ensemble members on the predictability estimation of ensemble forecasting. Given that the 

KL divergence is obtained by computing the difference between the probability distributions 

of local reference states and ensemble forecasts, an accurate estimate of the KL divergence 

depends on an accurate estimate of the probability distributions of local reference states and 

ensemble forecasts. However, a sufficiently large number of ensemble members is required to 

accurately estimate the probability distribution of ensemble forecasts. It is likely that the 

method using the KL divergence to estimate the predictability of ensemble forecasting would 

give worse results for ensemble predictions using operational weather forecasting models, in 

which the number of ensemble members is usually restricted due to limitations in computing 

resources. 

The number of ensemble members used in the present study is 510N  . We examine 

the dependence of the estimated predictability limit of ensemble forecasting on the number of 

ensemble members. Figure 10 shows the estimated local predictability limit of ensemble 
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forecasting starting from 01x  as a function of the number of ensemble members. The 

number of ensemble members decreases from 10
5
 to 200; the latter is close to the number of 

ensemble members used in current operational weather forecasting. The local predictability 

limit is initially almost constant, followed by a gradual decrease with decreasing number of 

ensemble members. This result might be expected because the estimation of the probability 

distributions of local reference states and ensemble forecasts would have larger uncertainties 

for a smaller number of ensemble members. The estimated predictability limit obtained using 

200 ensemble members is 
p 6.5T  , which is slightly lower than the limit obtained using 10

5
 

ensemble members. Similar results were obtained for other initial states (not shown). These 

results suggest that, although a smaller number of ensemble members tends to underestimate 

the predictability limit to some extent, such an underestimate is relatively slight. 

Consequently, it may be feasible to use a relatively small number of ensemble members to 

estimate the predictability of ensemble forecasting in the Lorenz model. 

Note that the above analyses are based solely on a simple toy model: the three-variable 

Lorenz model. For complex weather forecasting models, the situation may be different when 

we try to estimate the probability distribution in a higher-dimensional space using a small 

number of ensemble forecasts. In this case, the probability distribution of ensemble forecasts 

may be poorly estimated, possibly leading to a large error in the estimation of predictability. 

This may be a limitation of the KL divergence. Hopefully, with increased computing 

resources available, the number of ensemble members can be further increased in real-world 

numerical weather models. Further research is required to examine the application of the KL 
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divergence in real-world ensemble weather forecasts and to assess the influence of ensemble 

size on estimates of predictability. 

We then consider another important question regarding the influence of model errors on 

the accurate estimation of the KL divergence. This study simply uses the Lorenz model 

without model error. Given the existence of model error, the probability distribution of true 

states P  is generally unknown. If the forecast states are used instead of true states, the KL 

divergence and hence the estimated predictability limit would possibly include an error. For 

the Lorenz attractor, the local attractor with respect to a given state is not sensitive to the state 

itself (see Fig. 1), and the local attractor and its probability distribution of nearby states are 

similar. Consequently, a small error in the Lorenz model would produce a relatively small 

initial error in the KL divergence. In real-world ensemble weather forecasts, although models 

are imperfect, a large amount of observed atmospheric data is available. We can use 

observations to estimate the probability distribution of true states; this remains a topic for 

future research. 

4. Conclusions 

We have presented a new method using the KL divergence to measure the predictability 

of ensemble forecasting. The KL divergence allows us to estimate the difference between the 

probability distributions of ensemble forecasts and local reference (true) states. By 

investigating the evolution of the KL divergence with time, the local predictability limit of 

ensemble forecasting may be quantitatively determined. The KL divergence is applicable to a 

non-normal distribution of ensemble forecasts. This represents an improvement over the 
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ensemble spread, which is only applicable under the assumption that the ensemble members 

follow a normal distribution. Using the KL divergence, we have performed a quantitative 

analysis of the predictability of ensemble forecasting in the Lorenz model. The local 

predictability limit derived from the KL divergence is clearly consistent with that derived 

from error evolution, lending support to the effectiveness of the KL divergence in measuring 

the predictability of ensemble forecasting. 

In addition, we have investigated the sensitivity of the predictability of ensemble 

forecasting to the initial states and the magnitude of initial errors. We found that the 

predictability of ensemble forecasting depends on the initial states as well as on the 

magnitude of initial errors. The local predictability limit of ensemble forecasting varies 

considerably with time, but the predictability variability shows organization in phase space. 

The predictability of ensemble forecasting is also sensitive to the magnitude of initial errors. 

The local predictability limit decreases approximately linearly as the logarithm of the 

magnitude of initial errors is increased. 

Our study presents a preliminary application of the KL divergence in measuring the 

predictability of ensemble forecasting in a relatively simple system. For more complex 

ensemble weather or climate forecasts, there will be higher dimensionality and more 

complicated models. This implies that there would exist some uncertainties in estimating the 

KL divergence for operational weather or climate forecasts, which poses a challenge to the 

accurate estimation of the KL divergence. It would be interesting to extend the current 

investigation to more realistic ensemble weather forecasts, which we intend to examine in 
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future research. In addition, this study simply used random perturbations as ensemble 

perturbations. Up to now, various schemes have been developed to generate the initial 

perturbations in ensemble forecasts, such as the bred vector method (Toth and Kalnay, 

1993,1997), the singular vector method (Molteni et al., 1996; Buizza, 1997), and the 

ensemble transform Kalman filter (Bishop et al., 2001; Wang and Bishop, 2003). These 

schemes have been shown to improve operational forecasts compared with random 

perturbations. It is worthwhile examining from the standpoint of the KL divergence the 

predictability of these ensemble forecasts using perturbations generated by such schemes. 
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APPENDIX A 

Introduction to the NLLE method 

Consider a general n-dimensional nonlinear dynamical system whose evolution is 

governed by 

( )
d

dt


x
F x ,        (A1) 

where  
T

1 2= ( ), ( ),......, ( )nx t x t x tx  is the state vector at time t , the superscript T is the 

transpose, and F  represents the dynamics. The evolution of a small error 
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 
T

1 2( ), ( ),......, ( )nt t t   , superimposed on a state x  is governed by the following 

nonlinear equation: 

( )
d

dt
 J x δ + ( , )G x δ ,       (A2) 

where ( )J x δ  are the tangent linear terms and ( , )G x   are the high-order nonlinear terms 

of the error  . Without a linear approximation, the solutions of Eq. (A2) can be obtained by 

numerical integration along the reference solution x  from 0=t t  to 0t  : 

 1 0 0 0, , x    ,        (A3) 

where 1 0( )t    , 0 0( )tx x , 0 0( )t  , and 0 0( , , )x   is the nonlinear propagator. 

The NLLE is then defined as 

1

0 0

0

1
( , , ) ln


 x





,       (A4) 

where 0 0( , , ) x   depends in general on the initial state 0x  in phase space, the initial error 

0 , and time  . The NLLE differs from existing local or finite-time Lyapunov exponents 

defined from linear error dynamics, which depend solely on the initial state 0x  and time  , 

and not on the initial error 0 . Assuming that all initial perturbations with amplitude   and 

random directions are on an n-dimensional spherical surface centered at an initial point 0x , 

then we have 

T 2

0 0 δ  .         (A5) 

The local ensemble mean of the NLLE over a large number of random initial 

perturbations is given by 
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0 0 0( , ) ( , , )
N

   x x δ ,       (A6) 

where 
N

 denotes the local ensemble average of samples of large enough size N  

( N ). Here, 
0( , ) x  characterizes the average growth rate of random perturbations 

superimposed on 0x  within a finite time  . For a fixed time  , 
0( , ) x  depends on 0x  

and reflects the local error growth dynamics of the attractor. The mean local relative growth 

of the initial error can be obtained by 

0( ( , ) )

0( , )E e
  


x

x .       (A7) 

For a given initial state 0x , 
0( , )E x  initially increases with time   and finally 

reaches a state of nonlinear stochastic fluctuation, which means that error growth reaches 

saturation with a constant average value. At that moment, almost all information on the initial 

state is lost and the prediction becomes meaningless. If the local predictability limit is defined 

as the time at which the error reaches the average value of the nonlinear stochastic fluctuation 

states, the predictability limit of the system at 0x  can be quantitatively determined. 
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Fig. 1. Projection of the LAR over the Lorenz attractor in the x–y plane. 
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Fig. 2. Schematic illustration of the consistency of the predictability limit (denoted as Tp) 

derived from (a) error and (b) probability evolutions. 
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Fig. 3. For the initial state on the Lorenz attractor 01x  (−5.76, −0.29, 30.5), we show (a) the 

KL divergence and (b) the mean error growth obtained using the NLLE method with   

as a function of time t . In (a), the time at which the KL divergence reaches its maximum value 

is indicated by the red dashed line. In (b), the average value of the nonlinear stochastic 

fluctuation states of the mean error is indicated by the black dashed line, and the time at which 

the error growth enters the nonlinear stochastic fluctuation states is indicated by the red dashed 

line. 
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Fig. 4. As in Fig. 3 but for the other initial state on the Lorenz attractor, 02x (10.3, 0.92, 16.7). 
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Fig. 5. Evolution of the probability distributions P  (local reference states; black line; left axis) 

and Q  (ensemble forecasts; red line; right axis) with time for 01x (−5.76, −0.29, 30.5). 
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Fig. 6. Evolution of the local attractor (green points) and ensemble forecast states (red points) 

starting from 01x
 
(−5.76, −0.29, 30.5) over the entire Lorenz attractor (gray points). 
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Fig. 7. Variations in the local predictability limit obtained using the KL divergence (red line) 

and NLLE (green line) as a function of initial states ix
 
( 1,2,...,600i  ) with   for a 

typical trajectory on the Lorenz attractor. 
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Fig. 8. Three-dimensional distribution of the local predictability limit of 5000 states on the 

Lorenz attractor derived from the KL divergence. 
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Fig. 9. Local predictability limits derived from the KL divergence (solid line with dots) and 

NLLE (dashed line with dots) as a function of the magnitude of initial error   for the initial 

state 03x  (6.03, 9.71, 16.5). 
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Fig. 10. Estimated local predictability limit of ensemble forecasting starting from 01x  (−5.76, 

−0.29, 30.5) over the Lorenz attractor as a function of the number of ensemble members. 

Number of ensemble members (N/100)


